Browsing by Author "Jusino, Michelle A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpeckerLandler, Lukas; Skelton, James; Jusino, Michelle A.; Van Lanen, Andy; Walters, Jeffrey R. (Nature Portfolio, 2022-07-08)Animals that create structures often display non-random patterns in the direction of their constructions. This tendency of oriented construction is widely presumed to be an adaptive trait of the constructor's extended phenotype, but there is little empirical support for this hypothesis. Particularly, for cavity nesting-birds there is a lack of studies examining this issue. In this study of a primary cavity excavator, the endangered red-cockaded woodpecker (Dryobates borealis), we show that cavity entrances exhibited a strong westward bias in all 11 of the populations examined throughout the geographic range of the species in the southeastern United States. This species requires cavities in living pine trees for roosting and nesting that often take many years to complete, resulting in many incomplete excavations on the landscape. We used population monitoring data to show that orientation was stronger among completed cavities than incomplete cavities. There was a significant correlation between latitude and average cavity direction among populations, turning northward with increasing latitude, suggesting adaptation to local conditions. Long-term monitoring data showed that cavity orientation and breeding group size are correlated with egg hatching rates, fledging rates, and the total number of fledglings produced per nest. Our results provide empirical evidence from extensive long-term data that directional orientation in animal constructions is an important feature of the extended animal phenotype and have immediate implications for animal ecology and the conservation of endangered species.
- Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungiJusino, Michelle A.; Lindner, Daniel L.; Banik, Mark T.; Rose, Kevin R.; Walters, Jeffrey R. (2016-03-30)Primary cavity excavators, such as woodpeckers, are ecosystem engineers in many systems. Associations between cavity excavators and fungi have long been hypothesized to facilitate cavity excavation, but these relationships have not been experimentally verified. Fungi may help excavators by softening wood, while excavators may facilitate fungal dispersal. Here we demonstrate that excavators facilitate fungal dispersal and thus we report the first experimental evidence of a symbiosis between fungi and a cavity excavator, the red-cockaded woodpecker (RCW, Picoides borealis). Swab samples of birds showed that RCWs carry fungal communities similar to those found in their completed excavations. A 26-month field experiment using human-made aseptically drilled excavations in live trees, half of which were inaccessible to RCWs, demonstrated that RCWs directly alter fungal colonization and community composition. Experimental excavations that were accessible to RCWs contained fungal communities similar to natural RCW excavations, whereas inaccessible experimental excavations contained significantly different fungal communities. Our work demonstrates a complex symbiosis between cavity excavators and communities of fungi, with implications for forest ecology, wildlife management, and conservation.