Browsing by Author "Kakumanu, Madhavi L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change worldKakumanu, Madhavi L.; Ma, Li; Williams, Mark A. (Springer Nature, 2019-07-29)High microbial carbon (MBC) demand, a proxy for energy demand (cost), during soil microbial response to stressors such as drought are a major gap in understanding global biogeochemical cycling of carbon (C) and nitrogen (N). The dynamics of two dominant microbial pools (amino acids; AA and exopolymeric substances; EPS) in soils exposed to drying and C and N amendment to mimic both low and high nutrient soil habitats were examined. It was hypothesized that dynamics of EPS and AA (osmolytes) would be greater when soil drying was preceded by a pulse of bioavailable C and N. Drying reduced AA content, even as overall soil MBC increased (similar to 35%). The increase in absolute amounts and mol% of certain AA (eg: Taurine, glutamine, tyrosine, phenylalanine) in the driest treatment (-10 MPa) were similar in both soils regardless of amendment suggesting a common mechanism underlying the energy intensive acclimation across soils. MBC and EPS, both increased similar to 1.5X and similar to 3X due to drying and especially drying associated with amendment. Overall major pools of C and N based microbial metabolites are dynamic to drying (drought), and thus have implications for earth's biogeochemical fluxes of C and N, perhaps costing 4-7% of forest fixed photosynthetic C input during a single drying (drought) period.
- Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide ExposuresKakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R. (Frontiers, 2016-08-16)Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.