Browsing by Author "Karimi, A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Bioconvection in spatially extended domainsKarimi, A.; Paul, Mark R. (American Physical Society, 2013-05-22)We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically integrate the three-dimensional, time-dependent continuum model of Pedley using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern dynamics which we compare with available theory and experimental measurement. There is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the governing equations correspond qualitatively to what has been described experimentally. However, at long times the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the wavelength is found to decrease with time.
- Exploring spiral defect chaos in generalized Swift-Hohenberg models with mean flowKarimi, A.; Huang, Zhi-Feng; Paul, Mark R. (American Physical Society, 2011-10-28)We explore the phenomenon of spiral defect chaos in two types of generalized Swift-Hohenberg model equations that include the effects of long-range drift velocity or mean flow. We use spatially extended domains and integrate the equations for very long times to study the pattern dynamics as the magnitude of the mean flow is varied. The magnitude of the mean flow is adjusted via a real and continuous parameter that accounts for the fluid boundary conditions on the horizontal surfaces in a convecting layer. For weak values of the mean flow, we find that the patterns exhibit a slow coarsening to a state dominated by large and very slowly moving target defects. For strong enough mean flow, we identify the existence of spatiotemporal chaos, which is indicated by a positive leading-order Lyapunov exponent. We compare the spatial features of the mean flow field with that of Rayleigh-Bénard convection and quantify their differences in the neighborhood of spiral defects.
- Extensive Chaos in The Lorenz-96 ModelKarimi, A.; Paul, Mark R. (AIP Publishing, 2010-12-01)We explore the high-dimensional chaotic dynamics of the Lorenz-96 model by computing the variation of the fractal dimension with system parameters. The Lorenz-96 model is a continuous in time and discrete in space model first proposed by Lorenz to study fundamental issues regarding the forecasting of spatially extended chaotic systems such as the atmosphere. First, we explore the spatiotemporal chaos limit by increasing the system size while holding the magnitude of the external forcing constant. Second, we explore the strong driving limit by increasing the external forcing while holding the system size fixed. As the system size is increased for small values of the forcing we find dynamical states that alternate between periodic and chaotic dynamics. The windows of chaos are extensive, on average, with relative deviations from extensivity on the order of 20%. For intermediate values of the forcing we find chaotic dynamics for all system sizes past a critical value. The fractal dimension exhibits a maximum deviation from extensivity on the order of 5% for small changes in system size and the deviation from extensivity decreases nonmonotonically with increasing system size. The length scale describing the deviations from extensivity is consistent with the natural chaotic length scale in support of the suggestion that deviations from extensivity are due to the addition of chaotic degrees of freedom as the system size is increased. We find that each wavelength of the deviation from extensive chaos contains on the order of two chaotic degrees of freedom. As the forcing is increased, at constant system size, the dimension density grows monotonically and saturates at a value less than unity. We use this to quantify the decreasing size of chaotic degrees of freedom with increased forcing which we compare with spatial features of the patterns. (C) 2010 American Institute of Physics. [doi:10.1063/1.3496397]
- Length scale of a chaotic element in Rayleigh-Benard convectionKarimi, A.; Paul, Mark R. (American Physical Society, 2012-12-20)We describe an approach to quantify the length scale of a chaotic element of a Rayleigh-Bénard convection layer exhibiting spatiotemporal chaos. The length scale of a chaotic element is determined by simultaneously evolving the dynamics of two convection layers with a unidirectional coupling that involves only the time-varying values of the fluid velocity and temperature on the lateral boundaries of the domain. In our results we numerically simulate the full Boussinesq equations for the precise conditions of experiment. By varying the size of the boundary used for the coupling we identify a length scale that describes the size of a chaotic element. The length scale of the chaotic element is of the same order of magnitude, and exhibits similar trends, as the natural chaotic length scale that is based upon the fractal dimension.
- Quantifying spatiotemporal chaos in Rayleigh-Benard convectionKarimi, A.; Paul, Mark R. (American Physical Society, 2012-04-02)Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-Bénard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading-order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading-order Lyapunov exponent, and we quantify the details of their response to the dynamics of defects. The leading-order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary-dominated dynamics to bulk-dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics.