Browsing by Author "Kennedy, George G."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Abundance and Species Diversity of Thrips (Thysanoptera: Thripidae) in Cotton, Soybean, and Peanut in Southeast Virginia, and Evaluation of Cyantraniliprole for Thrips ManagementSamler, Jessica Anne (Virginia Tech, 2012-04-24)Thrips are major agricultural pests throughout much of the United States. More information is needed about sampling methods, management practices, and insecticide susceptibility to help better control this pest. A two year survey was conducted to determine the species present in southeast Virginia and the population characteristics of those species. Thrips were monitored using yellow sticky traps. Tobacco thrips, Frankliniella fusca, were the most abundant species. In general thrips populations began to build up beginning in April, peaked in August, and then started to decline. Differences in this trend were observed between species. A study was conducted in seedling soybean to evaluate the within-plant location of thrips, whether a plant subsample could be used for thrips monitoring, and to determine the thrips species complex present. Soybean thrips, Neohydatothrips variabilis, were the most prominent species present. The greatest density of thrips larvae was located in the terminal bud of the seedling and suggests that immature thrips aggregate. Neither of the proposed subsamples of plant material explained the variability in immature thrips numbers and at this time we recommend whole-plant sampling for obtaining the most accurate estimate of thrips populations in seedling soybean. Tobacco thrips, F. fusca, as well as a complex of other thrips species attack cotton and peanut seedlings and can cause significant yield loss to these crops in the mid-Atlantic U.S. Experiments were conducted in these two crops to assess the efficacy of a novel diamide insecticide cyantraniliprole applied as a liquid in-furrow at planting and post-plant emergence broadcast spray treatment to control thrips. In both cropping systems cyantraniliprole significantly reduced the number of immature thrips and reduced thrips feeding injury to the plants. In several instances cyantraniliprole treatments resulted in increased yield as compared to the non-insecticide treated control and yields which were statistically similar to those obtained with standard thrips control insecticides. Laboratory bioassays were conducted to evaluate the toxicity (LC50 values) of cyantraniliprole and two conventional insecticides against F. fusca adults. Results of these assays were inconclusive. At times F. fusca adults were susceptible to the insecticides, but the results could not be replicated consistently.
- Evaluating invasion risk and population dynamics of the brown marmorated stink bug across the contiguous United StatesIllán, Javier Gutierrez; Zhu, Gengping; Walgenbach, James F.; Acebes-Doria, Angel; Agnello, Arthur M.; Alston, Diane G.; Andrews, Heather; Beers, Elisabeth H.; Bergh, J. Christopher; Bessin, Ricardo T.; Blaauw, Brett R.; Buntin, G. David; Burkness, Erik C.; Cullum, John P.; Daane, Kent M.; Fann, Lauren E.; Fisher, Joanna; Girod, Pierre; Gut, Larry J.; Hamilton, George C.; Hepler, James R.; Hilton, Richard; Hoelmer, Kim A.; Hutchison, William D.; Jentsch, Peter J.; Joseph, Shimat V.; Kennedy, George G.; Krawczyk, Grzegorz; Kuhar, Thomas P.; Lee, Jana C.; Leskey, Tracy C.; Marshal, Adrian T.; Milnes, Joshua M.; Nielsen, Anne L.; Patel, Dilani K.; Peterson, Hillary D.; Reisig, Dominic D.; Rijal, Jhalendra P.; Sial, Ashfaq A.; Spears, Lori R.; Stahl, Judith M.; Tatman, Kathy M.; Taylor, Sally V.; Tillman, Glynn; Toews, Michael D.; Villanueva, Raul T.; Welty, Celeste; Wiman, Nik G.; Wilson, Julianna K.; Zalom, Frank G.; Crowder, David W. (Wiley, 2022-11-01)BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over 3 years to assess factors mediating the occurrence and abundance of brown marmorated stink bug (BMSB, Halyomorpha halys), an invasive insect pest that has readily established throughout much of the United States. RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB distribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios. However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abundance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance was influenced most strongly by evapotranspiration and solar photoperiod. CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance) offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are discussed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- The Spatiotemporal Distribution, Abundance, and Seasonal Dynamics of Cotton-Infesting Aphids in the Southern U.S.Mahas, John W.; Mahas, Jessica B.; Ray, Charles; Kesheimer, Adam; Steury, Todd D.; Conzemius, Sophia R.; Crow, Whitney; Gore, Jeffrey; Greene, Jeremy K.; Kennedy, George G.; Kerns, David; Malone, Sean; Paula-Moraes, Silvana; Roberts, Phillip; Stewart, Scott D.; Taylor, Sally; Toews, Michael; Jacobson, Alana L. (MDPI, 2023-07-15)Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other species have been reported to feed on, but not often infest, cotton: Protaphis middletonii Thomas, Aphis craccivora Koch, Aphis fabae Scopoli, Macrosiphum euphorbiae Thomas, Myzus persicae Sulzer, Rhopalosiphum rufiabdominale Sasaki, and Smynthurodes betae Westwood. These seven have not been studied in cotton, but due to their potential epidemiological importance, an understanding of the intra- and inter-annual variations of these species is needed. In 2020 and 2021, aphids were monitored from North Carolina to Texas using pan traps around cotton fields. All of the species known to infest cotton, excluding A. fabae, were detected in this study. Protaphis middletonii and A. gossypii were the most abundant species identified. The five other species of aphids captured were consistently low throughout the study and, with the exception of R. rufiabdominale, were not detected at all locations. The abundance, distribution, and seasonal dynamics of cotton-infesting aphids across the southern U.S. are discussed.
- Standardized Field Trials in Cotton and Bioassays to Evaluate Resistance of Tobacco Thrips (Thysanoptera: Thripidae) to Insecticides in the Southern United StatesKrob, Jessica L.; Stewart, Scott D.; Brown, Sebe A.; Kerns, Dawson; Graham, Scott H.; Perkins, Clay; Huseth, Anders S.; Kennedy, George G.; Reisig, Dominic D.; Taylor, Sally V.; Towles, Tyler B.; Kerns, David L.; Thrash, Benjamin C.; Lorenz, Gus M.; Bateman, Nick R.; Cook, Don R.; Crow, Whitney D.; Gore, Jeffrey; Catchot, Angus L.; Musser, Fred R.; Catchot, Beverly (Oxford University Press, 2022-09)Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate. Field observations in Tennessee suggest that the performance of acephate has declined. Thus, the first objective was to perform leaf-dip bioassays to assess if tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton production regions have evolved resistance to foliar-applied insecticides. A second objective was to assess the performance of commonly applied foliar insecticides for managing thrips in standardized field trials in Arkansas, Tennessee, Mississippi, and Texas. For both objectives, several insecticides were evaluated including acephate, dicrotophos, dimethoate, lambda-cyhalothrin, imidacloprid, and spinetoram. Field trials and bioassays were completed from 2018 to 2021. Dose-response bioassays with acephate were performed on tobacco thrips field populations and a susceptible laboratory population. Bioassay results suggest that tobacco thrips have developed resistance to acephate and other organophosphate insecticides; however, this resistance seems to be most severe in Arkansas, Tennessee, and the Delta region of Mississippi. Resistance to other classes of insecticides were perhaps even more evident in these bioassays. The performance of these insecticides in field trials was variable, with tobacco thrips only showing consistent signs of resistance to lambda-cyhalothrin. However, it is evident that many populations of tobacco thrips are resistant to multiple classes of insecticides. Further research is needed to determine heritability and resistance mechanism(s).