Browsing by Author "Lee, Jui-Chi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Novel Multitemporal Synthetic Aperture Radar Interferometry Algorithms and Models Applied on Managed Aquifer Recharge and Fault CreepLee, Jui-Chi (Virginia Tech, 2024-02-09)The launch of Sentinel-1A/B satellites in 2014 and 2016 marked a pivotal moment in Synthetic Aperture Radar (SAR) technology, ushering in a golden era for SAR. With a revisit time of 6–12 days, these satellites facilitated the acquisition of extensive stacks of high-resolution SAR images, enabling advanced time series analysis. However, processing these stacks posed challenges like interferometric phase degradation and tropospheric phase delay. This study introduces an advanced Small Baseline Subset (SBAS) algorithm that optimizes interferometric pairs, addressing systematic errors through dyadic downsampling and Delaunay Triangulation. A novel statistical framework is developed for elite pixel selection, considering distributed and permanent scatterers, and a tropospheric error correction method using smooth 2D splines effectively identifies and removes error components with fractal-like structures. Beyond geodetic technique advancements, the research explores geological phenomena, detecting five significant slow slip events (SSEs) along the Southern San Andreas Fault using multitemporal SAR interferometric time series from 2015-2021. These SSEs govern aseismic slip dynamics, manifesting as avalanche-like creep rate variations. The study further investigates Managed Aquifer Recharge (MAR) as a nature-engineering-based solution in the Santa Ana Basin. Analyzing surface deformation from 2004 to 2022 demonstrates MAR's effectiveness in curbing land subsidence within Orange County, CA. Additionally, MAR has the potential to stabilize nearby faults by inducing a negative Coulomb stress change. Projecting into the future, a suggested 2% annual increase in recharge volume through 2050 could mitigate land subsidence and reduce seismic hazards in coastal cities vulnerable to relative sea level rise. This integrated approach offers a comprehensive understanding of geological processes and proposes solutions to associated risks.
- Persistent impact of spring floods on crop loss in U.S. MidwestShirzaei, Manoochehr; Koshmanesh, Mostafa; Ojha, Chandrakanta; Werth, Susanna; Kerner, Hannah; Carlson, Grace; Sherpa, Sonam Futi; Zhai, Guang; Lee, Jui-Chi (Elsevier, 2021-10-20)Climate extremes threaten global food security, and compound events, such as late spring heavy and warmer rainfall over snow and subsequent flooding, exacerbate this vulnerability. Despite frequent occurrences in recent years, a quantitative understanding of the compound weather events' impacts remains elusive. Here, we use Synthetic Aperture Radar data from Sentinel-1 and normalized difference vegetation index data from MODIS satellites to map the spring 2019 U.S. Midwest flood extent and evaluate its impact on crop loss. We find a statistically significant association between flooded counties and those with plant greenup delay, while the correlation between flood area percent and amount of green-up delay remains weak, albeit reliable. An analysis of the stream gage time series and crop loss records shows that during the past ∼70 years, ∼43% of spring large discharges are associated with widespread crop loss. We also find an increase in streams' discharge frequency and magnitude across the Midwest, indicating the possibility of a future increase in crop loss due to spring flooding. This study highlights the importance of Earth-observing satellite data for developing climate adaptation and resilience plans.