Browsing by Author "Li, L."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- COHERENT constraint on leptophobic dark matter using CsI dataAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Major, A.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mattingly, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Prior, C.; Rapp, R.; Ray, H.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Snow, W. M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (American Physical Society, 2022-09-14)We use data from the COHERENT CsI[Na] scintillation detector to constrain sub-GeV leptophobic dark matter models. This detector was built to observe low-energy nuclear recoils from coherent elastic neutrino-nucleus scattering. These capabilities enable searches for dark matter particles produced at the Spallation Neutron Source mediated by a vector portal particle with masses between 2 and 400 MeV/c2. No evidence for dark matter is observed and a limit on the mediator coupling to quarks is placed. This constraint improves upon previous results by two orders of magnitude. This newly explored parameter space probes the region where the dark matter relic abundance is explained by leptophobic dark matter when the mediator mass is roughly twice the dark matter mass. COHERENT sets the best constraint on leptophobic dark matter at these masses.
- A D2O detector for flux normalization of a pion decay-at-rest neutrino sourceAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bolozdynya, A.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Day, E.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Koros, J.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Ward, E. M.; Wiseman, C.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (IOP, 2021-08-16)We report on the technical design and expected performance of a 592 kg heavy-water-Cherenkov detector to measure the absolute neutrino flux from the pion-decay-at-rest neutrino source at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The detector will be located roughly 20 m from the SNS target and will measure the neutrino flux with better than 5% statistical uncertainty in 2 years. This heavy-water detector will serve as the first module of a two-module detector system to ultimately measure the neutrino flux to 2-3% at both the First Target Station and the planned Second Target Station of the SNS. This detector will significantly reduce a dominant systematic uncertainty for neutrino cross-section measurements at the SNS, increasing the sensitivity of searches for new physics.
- Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design ReportAbud, A. Abed; Abi, B.; Acciarri, R.; Acero, M. A.; Adamov, G.; Adams, D. A.; Adinolfi, M.; Aduszkiewicz, A.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S. Alonso; Alrashed, M.; Alt, C.; Alton, A.; Amedo, P.; Anderson, J.; Andreopoulos, C.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anfimov, N.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda Fernandez, A.; Ariga, A.; Arnold, L. O.; Arroyave, M. A.; Asaadi, J.; Aurisano, A.; Aushev, V.; Autiero, D.; Ayala-Torres, M.; Azfar, F.; Back, A.; Back, Henning Olling; Back, J. J.; Backhouse, C.; Baesso, P.; Bagaturia, I.; Bagby, L.; Balasubramanian, S.; Baldi, P.; Baller, B.; Bambah, B.; Barao, F.; Barenboim, G.; Barker, G. J.; Barkhouse, W.; Barnes, C.; Barr, G.; Monarca, J. Barranco; Barros, N.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Belchior, E.; Battat, J. B. R.; Battisti, F.; Bay, F.; Alba, J. L. Bazo; Beacom, J. F.; Bechetoille, E.; Behera, B.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Belver, D.; Benekos, N.; Neves, F. Bento; Berkman, S.; Bernardini, P.; Berner, R. M.; Berns, H.; Bertolucci, S.; Betancourt, M.; Rodríguez, A. Betancur; Bhattacharjee, M.; Bhuller, S.; Bhuyan, B.; Biagi, S.; Bian, J.; Biassoni, M.; Biery, K.; Bilki, B.; Bishai, M.; Bitadze, A.; Blake, A.; Blaszczyk, F. D. M.; Blazey, G. C.; Blucher, E.; Boissevain, J. G.; Bolognesi, S.; Bolton, T.; Bomben, L.; Bonesini, M.; Bongrand, M.; Bonini, F.; Booth, A.; Booth, C.; Bordoni, S.; Borkum, A.; Boschi, T.; Bostan, N.; Bour, P.; Bourgeois, C.; Boyd, S. B.; Boyden, D.; Bracinik, J.; Braga, D.; Brailsford, D.; Brandt, A.; Bremer, J.; Brew, C.; Brianne, E.; Brice, S. J.; Brizzolari, C.; Bromberg, C.; Brooijmans, G.; Brooke, J.; Bross, A.; Brunetti, G.; Brunetti, M.; Buchanan, N.; Budd, H.; Cagnoli, I.; Caiulo, D.; Calafiura, P.; Calcutt, J.; Calin, M.; Calvez, S.; Calvo, E.; Caminata, A.; Campanelli, M.; Cankocak, K.; Caratelli, D.; Carini, G.; Carlus, B.; Carniti, P.; Terrazas, I. Caro; Carranza, H.; Carroll, T.; Forero, J. F. Castaño; Castillo, A.; Castromonte, C.; CatanoMur, E.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cervelli, A.; Cervera Villanueva, A.; Chalifour, M.; Chappell, A.; Chardonnet, E.; Charitonidis, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, H.; Chen, M.; Chen, Y.; Chen, Z.; Cherdack, D.; Chi, C.; Childress, S.; Chiriacescu, A.; Chisnall, G.; Cho, K.; Choate, S.; Chokheli, D.; Choubey, S.; Christensen, A.; Christian, D.; Christodoulou, G.; Chukanov, A.; Church, E.; Cicero, V.; Clarke, P.; Coan, T. E.; Cocco, A. G.; Coelho, J. A. B.; Conley, E.; Conley, R.; Conrad, Janet M.; Convery, M.; Copello, S.; Corwin, L.; Cremaldi, L.; Cremonesi, L.; Crespo-Anadon, J. I.; Cristaldo, E.; Cross, R.; Cudd, A.; Cuesta, C.; Cui, Y.; Cussans, D.; Dabrowski, M.; Dalager, O.; Motta, H. da; Peres, L. Da Silva; David, C.; David, Q.; Davies, G. S.; Davini, S.; Dawson, J.; De, K.; Almeida, R. M. De; Debbins, P.; Bonis, I. De; Decowski, M. P.; Gouvea, A. D.; Holanda, P. C. De; Astiz, I. L. De Icaza; Deisting, A.; Jong, P. De; Delbart, A.; Delepine, D.; Delgado, M.; Dell’Acqua, A.; DeLurgio, P.; Neto, J. R. T. de Mello; DeMuth, D. M.; Dennis, S.; Densham, C.; Deptuch, G. W.; De Roeck, A.; Romeri, V. De; Souza, G. De; Dharmapalan, R.; Diaz, F.; Diaz, J. S.; Domizio, S. Di; Giulio, L. Di; Ding, P.; Di Noto, Lea; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Zelimir; Dokania, N.; Dolan, S.; Dolinski, M. J.; Domine, L.; Douglas, D.; Douillet, D.; Drake, G.; Drielsma, F.; Duchesneau, D.; Duffy, K.; Dunne, P.; Durkin, T.; Duyang, H.; Dvornikov, O.; Dwyer, D. A.; Dyshkant, A. S.; Eads, M.; Earle, A.; Edmunds, D.; Eisch, J.; Emberger, L.; Emery, S.; Ereditato, A.; Escobar, C. O.; Eurin, G.; Evans, J. J.; Ewart, E.; Ezeribe, A. C.; Fahey, K.; Falcone, A.; Farnese, C.; Farzan, Y.; Felix, J.; Silva, M. Fernandes Carneiro da; Fernandez-Martinez, Enrique; Menendez, P. Fernandez; Ferraro, F.; Fields, L.; Filthaut, F.; Fiorentini, A.; Fitzpatrick, R. S.; Flanagan, W.; Fleming, B.; Flight, R.; Forero, D. V.; Fowler, J.; Fox, W.; Franc, J.; Francis, K.; Franco, D.; Freeman, J.; Freestone, J.; Fried, J.; Friedland, A.; Fuess, S.; Furic, I.; Furmanski, A. P.; Gabrielli, A.; Gago, A.; Gallagher, H.; Gallas, A.; Gallego-Ros, A.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Gandhi, R.; Gandrajula, R.; Gao, F.; Gao, S.; Garcia-Gamez, D.; García-Peris, M. Á.; Gardiner, S.; Gastler, D.; Ge, G.; Gelli, B.; Gendotti, A.; Gent, S.; Ghorbani-Moghaddam, Z.; Gibin, D.; Gil-Botella, I.; Gilligan, S.; Girerd, C.; Giri, A. K.; Gnani, D.; Gogota, O.; Gold, M.; Golapinni, S.; Gollwitzer, K.; Gomes, R. A.; Bermeo, L. V. Gomez; Fajardo, L. S. Gomez; Gonnella, F.; Gonzalez-Cuevas, J. A.; Gonzalez-Diaz, D.; Gonzalez-Lopez, M.; Goodman, M. C.; Goodwin, O.; Goswami, S.; Gotti, C.; Goudzovski, E.; Grace, C.; Graham, M.; Gran, R.; Granados, E.; Granger, P.; Grant, A.; Grant, C.; Gratieri, D.; Green, P.; Greenler, L.; Greer, J.; Griffith, W. C.; Groh, M.; Grudzinski, J.; Grzelak, K.; Gu, W.; Guarino, V.; Guenette, R.; Guerard, E.; Guerzoni, M.; Guglielmi, A.; Guo, B.; Guthikonda, K. K.; Gutierrez, R.; Guzowski, P.; Guzzo, M. M.; Gwon, S.; Habig, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haiston, J.; Hamacher-Baumann, P.; Hamernik, T.; Hamilton, P.; Han, J.; Harris, D. A.; Hartnell, J.; Harton, J.; Hasegawa, T.; Hasnip, C.; Hatcher, R.; Hatfield, K. W.; Hatzikoutelis, A.; Hayes, C.; Hazen, E.; Heavey, A.; Heeger, K. M.; Heise, J.; Hennessy, K.; Henry, S.; Morquecho, M. A. Hernandez; Herner, K.; Hertel, L.; Hewes, J.; Higuera, A.; Hill, T.; Hillier, S. J.; Himmel, A.; Hoff, J.; Hohl, C.; Holin, A.; Hoppe, E.; Horton-Smith, Glenn A.; Hostert, M.; Hourlier, A.; Howard, B.; Howell, R.; Huang, J.; Huang, J.; Hugon, J.; Iles, G.; Ilic, N.; Iliescu, A. M.; Illingworth, R.; Ingratta, G.; Ioannisian, A.; Isenhower, L.; Itay, R.; Izmaylov, A.; Jackson, S.; Jain, V.; James, E.; Jargowsky, B.; Jediny, F.; Jena, D.; Jeong, Y. S.; Jesús-Valls, C.; Ji, X.; Jiang, L.; Jiménez, S.; Jipa, A.; Johnson, R.; Johnston, N.; Jones, B.; Jones, S. B.; Judah, M.; Jung, C. K.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A.; Kadenko, I.; Kakorin, I.; Kamiya, F.; Kaneshige, N.; Karagiorgi, Georgia S.; Karaman, G.; Karcher, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasetti, S. P.; Kashur, L.; Kazaryan, N.; Kearns, E.; Keener, P.; Kelly, K. J.; Kemp, E.; Kemularia, O.; Ketchum, W.; Kettell, S. H.; Khabibullin, M.; Khotjantsev, A.; Khvedelidze, A.; Kim, D.; King, B.; Kirby, B.; Kirby, M.; Klein, J.; Koehler, K.; Koerner, L. W.; Kohn, S.; Koller, P. P.; Kolupaeva, L.; Kordosky, M.; Kosc, T.; Kose, U.; Kostelecký, V. A.; Kothekar, K.; Krennrich, F.; Kreslo, I.; Kudenko, Y.; Kudryavtsev, V. A.; Kulagin, S.; Kumar, J.; Kumar, P.; Kumar, R.; Kunze, P.; Kurita, N.; Kuruppu, C.; Kus, V.; Kutter, T.; Lambert, A.; Land, B.; Lande, K.; Lane, C. E.; Lang, K.; Langford, T.; Larkin, J.; Lasorak, P.; Last, D.; Lastoria, C.; Laundrie, A.; Laurenti, G.; Lawrence, A.; Lazanu, I.; LaZur, R.; Le, T.; Leardini, S.; Learned, J.; Lebrun, P.; LeCompte, T.; Miotto, G. Lehmann; Lehnert, R.; Oliveira, M. A. Leigui de; Leitner, M.; Li, L.; Li, S. W.; Li, T.; Li, Y.; Liao, H.; Lin, C. S.; Lin, Q.; Lin, S.; Lister, A.; Littlejohn, B. R.; Liu, J.; Lockwitz, S.; Loew, T.; Lokajicek, M.; Lomidze, I.; Long, K.; Loo, K.; Lorca, D.; Lord, T.; LoSecco, J. M.; Louis, W. C.; Lu, X. G.; Luk, K. B.; Luo, X.; Lurkin, N.; Lux, T.; Luzio, V. P.; MacFarlane, D.; Machado, A. A.; Machado, P.; Macias, C. T.; Macier, J. R.; Maddalena, A.; Madera, A.; Madigan, P.; Magill, S.; Mahn, K.; Maio, A.; Major, A.; Maloney, J. A.; Mandrioli, G.; Mandujano, R. C.; Maneira, J.; Manenti, L.; Manly, S.; Mann, A.; Manolopoulos, K.; Plata, M. Manrique; Manyam, V. N.; Manzanillas, L.; Marchan, M.; Marchionni, A.; Marciano, W. J.; Marfatia, D.; Mariani, Camillo; Maricic, Jelena; Marie, R.; Marinho, F.; Marino, A. D.; Marsden, D.; Marshak, M.; Marshall, C. M.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, N.; Martinez Caicedo, D. A.; Martynenko, S.; Mason, K.; Mastbaum, A.; Masud, M.; Matsuno, S.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mawby, I.; Mazza, R.; Mazzacane, A.; Mazzucato, E.; McAskill, T.; McCluskey, E.; McConkey, N.; McFarland, K. S.; McGrew, C.; McNab, A.; Mefodiev, A.; Mehta, P.; Melas, P.; Mena, O.; Menary, S.; Mendez, H.; Méndez, D. P.; Menegolli, A.; Meng, G.; Messier, M. D.; Metcalf, W.; Mettler, T.; Mewes, M.; Meyer, H.; Miao, T.; Michna, G.; Miedema, T.; Migenda, J.; Mikola, V.; Milincic, R.; Miller, W.; Mills, J.; Milne, C.; Mineev, O.; Miranda, O. G.; Miryala, S.; Mishra, C. S.; Mishra, S. R.; Mislivec, A.; Mladenov, D.; Mocioiu, I.; Moffat, K.; Moggi, N.; Mohanta, R.; Mohayai, T. A.; Mokhov, N.; Molina, J.; Bueno, L. Molina; Montanari, A.; Montanari, C.; Montanari, D.; Montagna, E.; Zetina, L. M. Montano; Moon, J.; Mooney, M.; Moor, A. F.; Moreno, D.; Morris, C.; Mossey, C.; Motuk, E.; Moura, C. A.; Mousseau, J.; Mu, W.; Mualem, L.; Mueller, J.; Muether, M.; Mufson, S.; Muheim, F.; Muir, A.; Mulhearn, M.; Munford, D.; Muramatsu, H.; Murphy, S.; Musser, J.; Nachtman, J.; Nagu, S.; Nalbandyan, M.; Nandakumar, R.; Naples, D.; Narita, S.; Navas-Nicolás, D.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Negishi, K.; Nelson, J. K.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Newhart, D.; Newton, H.; Niccolo, M.; Nichol, R.; Nicolas-Arnaldos, F.; Nicoletta, M.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Northrop, R.; Novella, P.; Nowak, J.; Oberling, M.; Ochoa-Ricoux, J. P.; Campo, A. Olivares Del; Olivier, A.; Olshevski, A.; Onel, Y.; Onishchuk, Y.; Ott, J.; Pagani, L.; Pakvasa, S.; Palacio, G.; Palamara, O.; Palestini, S.; Paley, J. M.; Pallavicini, M.; Palomares, C.; Palomino-Gallo, J. L.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Papaleo, R.; Papanestis, A.; Paramesvaran, S.; Parke, S.; Parsa, Z.; Parvu, M.; Pascoli, S.; Pasqualini, L.; Pasternak, J.; Pater, J.; Patrick, C.; Patrizii, L.; Patterson, R. B.; Patton, S. J.; Patzak, T.; Paudel, A.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Pec, V.; Peeters, S. J. M.; Pennacchio, E.; Penzo, A.; Peres, O. L. G.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Piastra, F.; Pickering, L.; Pietropaolo, F.; Plunkett, R.; Poling, R.; Pons, X.; Poonthottathil, N.; Poppi, F.; Pordes, S.; Porter, J.; Potekhin, M.; Potenza, R.; Potukuchi, B. V. K. S.; Pozimski, J.; Pozzato, M.; Prakash, S.; Prakash, T.; Prince, S.; Pugnere, D.; Qian, X.; Bazetto, M. C. Queiroga; Raaf, J. L.; Radeka, V.; Rademacker, J.; Radics, B.; Rafique, A.; Raguzin, E.; Rai, M.; Rajaoalisoa, M.; Rakhno, I.; Rakotonandrasana, A.; Rakotondravohitra, L.; Ramachers, Y. A.; Rameika, R.; Delgado, M. A. Ramirez; Ramson, B.; Rappoldi, A.; Raselli, G. L.; Ratoff, P.; Raut, S.; Razakamiandra, R. F.; Real, J. S.; Rebel, B.; Reggiani-Guzzo, M.; Rehak, T.; Reichenbacher, J.; Reitzner, S. D.; Sfar, H. Rejeb; Renshaw, A. L.; Rescia, S.; Resnati, F.; Reynolds, A.; Riccio, C.; Riccobene, G.; Rice, L. C. J.; Ricol, J.; Rigamonti, A.; Rigaut, Y.; Rivera, D.; Rochester, L.; Roda, M.; Rodrigues, P.; Alonso, M. J. Rodriguez; Bonilla, E. Rodriguez; Rondon, J. Rodriguez; Rosauro-Alcaraz, S.; Rosenberg, M.; Rosier, P.; Roskovec, B.; Rossella, M.; Rout, J.; Roy, P.; Roy, S.; Rubbia, A.; Rubbia, C.; Rubio, F. C.; Russell, B.; Ruterbories, D.; Saakyan, R.; Sacerdoti, S.; Safford, T.; Sahay, R.; Sahu, N.; Sala, P.; Samios, N.; Samoylov, O.; Sanchez, Maria Cristina; Sanders, D. A.; Sankey, D.; Santana, S.; Santos-Maldonado, M.; Saoulidou, N.; Sapienza, P.; Sarasty, C.; Sarcevic, I.; Savage, G.; Savinov, V.; Scaramelli, A.; Scarff, A.; Scarpelli, A.; Schaffer, T.; Schellman, H.; Schlabach, P.; Schmitz, D.; Scholberg, K.; Schukraft, A.; Segreto, E.; Sensenig, J.; Seong, I.; Sergi, A.; Sgalaberna, D.; Shaevitz, Marjorie Hansen; Shafaq, S.; Shamma, M.; Sharankova, R.; Sharma, H. R.; Sharma, R.; Shaw, T.; Shepherd-Themistocleous, C.; Shin, S.; Shooltz, D.; Shrock, R.; Simard, L.; Simon, F.; Simos, N.; Sinclair, J.; Sinev, G.; Singh, J.; Singh, J.; Singh, V.; Sipos, R.; Sippach, F. W.; Sirri, G.; Sitraka, A.; Siyeon, K.; VIII, K. Skarpaas; Smith, A.; Smith, E.; Smith, P.; Smolik, J.; Smy, M.; Snider, E. L.; Snopok, P.; Nunes, M. Soares; Sobel, H.; Soderberg, M.; Salinas, C. J. Solano; Söldner-Rembold, S.; Soleti, S. R.; Solomey, N.; Solovov, V.; Sondheim, W. E.; Sorel, M.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Spagliardi, F.; Spanu, M.; Spitz, Joshua; Spooner, N. J. C.; Spurgeon, K.; Staley, R.; Stancari, M.; Stanco, L.; Stanley, R.; Stein, R.; Steiner, H. M.; Stewart, J.; Stillwell, B.; Stock, J.; Stocker, F.; Stokes, T.; Strait, M.; Strauss, T.; Striganov, S.; Stuart, A.; Suarez, J. G.; Sullivan, H.; Summers, D.; Surdo, A.; Susic, V.; Suter, L.; Sutera, C. M.; Svoboda, R.; Szczerbinska, B.; Szelc, A. M.; Talaga, R.; Tanaka, H. A.; Oregui, B. Tapia; Tapper, A.; Tariq, S.; Tatar, E.; Tayloe, R.; Teklu, A. M.; Tenti, M.; Terao, K.; Ternes, C. A.; Terranova, F.; Testera, G.; Thea, A.; Thompson, J. L.; Thorn, C.; Timm, S. C.; Todd, J.; Tonazzo, A.; Torbunov, D.; Torti, M.; Tortola, M.; Tortorici, F.; Totani, D.; Toups, M.; Touramanis, C.; Tosi, N.; Travaglini, R.; Trevor, J.; Trilov, S.; Trzaska, W. H.; Tsai, Y. T.; Tsamalaidze, Z.; Tsang, K. V.; Tsverava, N.; Tufanli, S.; Tull, C.; Tyley, E.; Tzanov, M.; Uchida, M. A.; Urheim, J.; Usher, T.; Uzunyan, S.; Vagins, M. R.; Vahle, P.; Valdiviesso, G. A.; Valencia, E.; Valerio, P.; Vallari, Z.; Valle, J. W. F.; Vallecorsa, S.; Berg, R. Van; Van de Water, R. G.; Varanini, F.; Vargas, D.; Varner, G.; Vasel, J.; Vasina, S.; Vasseur, G.; Vaughan, N.; Vaziri, K.; Ventura, S.; Verdugo, A.; Vergani, S.; Vermeulen, M. A.; Verzocchi, M.; Vicenzi, M.; Souza, H. Vieira de; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Waldron, A. V.; Wallbank, M.; Wang, H.; Wang, J.; Wang, L.; Wang, M. H. L. S.; Wang, Y.; Wang, Y.; Warburton, K.; Warner, D.; Wascko, M. O.; Waters, D.; Watson, A.; Weatherly, P.; Weber, A.; Weber, M.; Wei, H.; Weinstein, A.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M. J.; Wilkinson, C.; Williams, Z.; Wilson, F.; Wilson, R. J.; Wolcott, J.; Wongjirad, T.; Wood, A.; Wood, K.; Worcester, E.; Worcester, M.; Wret, C.; Wu, W.; Wu, W.; Xiao, Y.; Yandel, E.; Yang, G.; Yang, K.; Yang, S.; Yang, T.; Yankelevich, A.; Yershov, N.; Yonehara, K.; Young, T.; Yu, B.; Yu, H.; Yu, J.; Yuan, W.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zazueta, L.; Zeit, G.; Zeller, Geralyn P.; Zennamo, J.; Zeug, K.; Zhang, C.; Zhao, M.; Zhivun, E.; Zhu, G.; Zilberman, P.; Zimmerman, E. D.; Zito, M.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R.; On behalf of the DUNE Collaboration (MDPI, 2021-09-29)The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.
- First Probe of Sub-GeV Dark Matter beyond the Cosmological Expectation with the COHERENT CsI Detector at the SNSAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Rapp, R.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (American Physical Society, 2023-02-03)The COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c2 using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keVnr. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6 kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants αD<0.64, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios.
- Measurement of natPb(νe,Xn) production with a stopped-pion neutrino sourceAn, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belling, S. W.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Brown, A.; Browning, J.; Cabrera-Palmer, B.; Cervantes, M.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Hakenmueller, J.; Heath, M. R.; Hedges, S.; Hughes, M.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Li, L.; Link, Jonathan M.; Liu, J.; Major, A.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mattingly, J.; Miller, K.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Subedi, T.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Ujah, E.; Vanderwerp, J.; Nieuwenhuizen, EE van E. V.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (American Physical Society, 2023-10-03)Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb(νe,Xn) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is 0.29-0.16+0.17 times that predicted by the MARLEY event generator using experimentally-measured Gamow-Teller strength distributions, consistent with no NIN events at 1.8σ. This is the first inelastic neutrino-nucleus process COHERENT has studied, among several planned exploiting the high flux of low-energy neutrinos produced at the SNS.
- Measurement of Electron-Neutrino Charged-Current Cross Sections on I 127 with the COHERENT NaIν E DetectorAn, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Brown, A.; Browning, J.; Cabrera-Palmer, B.; Cervantes, M.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Germer, A. C.; Green, M. P.; Hakenmüller, J.; Heath, M. R.; Hedges, S.; Hughes, M.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Li, L.; Link, Jonathan M.; Liu, J.; Mahoney, M.; Major, A.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mattingly, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Skuse, C.; Snow, W. M.; Sosnovtsev, V.; Subedi, T.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tsai, Y. T.; Ujah, E.; Vanderwerp, J.; Van Nieuwenhuizen, E. E.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yoo, J.; Yu, C. H.; Zawada, A.; Zettlemoyer, J.; Zderic, A. (American Physical Society, 2023-11-29)Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on I127 with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy (≤50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measurement of its inclusive cross section. After a five-year detector exposure, COHERENT reports a flux-averaged cross section for electron neutrinos of 9.2-1.8+2.1×10-40 cm2. This corresponds to a value that is ∼41% lower than predicted using the MARLEY event generator with a measured Gamow-Teller strength distribution. In addition, the observed visible spectrum from charged-current scattering on I127 has been measured between 10 and 55 MeV, and the exclusive zero-neutron and one-or-more-neutron emission cross sections are measured to be 5.2-3.1+3.4×10-40 and 2.2-0.5+0.4×10-40 cm2, respectively.
- Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENTAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Melikyan, Y. A.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (IOP, 2022-10-21)We present results of several measurements of CsI[Na] scintillation response to 3-60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region.
- Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENTAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J. (American Physical Society, 2022-08-17)We measured the cross section of coherent elastic neutrino-nucleus scattering (CEvNS) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source at Oak Ridge National Laboratory. New data collected before detector decommissioning have more than doubled the dataset since the first observation of CEvNS, achieved with this detector. Systematic uncertainties have also been reduced with an updated quenching model, allowing for improved precision. With these analysis improvements, the COHERENT Collaboration determined the cross section to be (165-25+30)×10-40 cm2, consistent with the standard model, giving the most precise measurement of CEvNS yet. The timing structure of the neutrino beam has been exploited to compare the CEvNS cross section from scattering of different neutrino flavors. This result places leading constraints on neutrino nonstandard interactions while testing lepton flavor universality and measures the weak mixing angle as sin2θW=0.220-0.026+0.028 at Q2≈(50 MeV)2.
- Monitoring the SNS basement neutron background with the MARS detectorAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J.; Johnson, B. A. (IOP, 2022-03-22)We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be 1.20 ± 0.56 neutrons/m2/MWh for neutron energies above ∼3.5 MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.
- Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosisGeng, S.; Zhang, Y.; Lee, C.; Li, L. (American Association for the Advancement of Science, 2019-02-06)Nonresolving inflammation perpetuated by innate leukocytes is involved in the pathogenesis of unstable atherosclerosis. However, the role and regulation of neutrophils related to nonresolving inflammation and atherosclerosis are poorly understood. We report herein that chronic subclinical endotoxemia, a risk factor for atherosclerosis, skewed neutrophils into a nonresolving inflammatory state with elevated levels of inflammatory mediators (Dectin-1, MMP9, and LTB4) and reduced levels of homeostatic mediators (LRRC32, TGF, and FPN). The polarization of neutrophils was due to ROS-mediated activation of oxCAMKII, caused by altered peroxisome homeostasis and reduced lysosome fusion. Application of 4-phenylbutyrate (4-PBA) enhanced peroxisome homeostasis of neutrophils, reduced oxCAMKII, and rebalanced the expression profiles of pro- and anti-inflammatory mediators. Adoptive transfer of neutrophils programmed by subclinical endotoxemia rendered exacerbated atherosclerosis. In contrast, transfer of ex vivo programmed neutrophils by 4-PBA reduced the pathogenesis of atherosclerosis. Our data define novel neutrophil dynamics associated with the progression and regression of atherosclerosis. Copyright © 2019 The Authors.
- Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experimentAkimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Galambos, J.; Rosso, A. Gallo; Galindo-Uribarri, A.; Green, M. P.; Heath, M. R.; Hedges, S.; Hoang, D.; Hughes, M.; Iverson, E.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, Jonathan M.; Liu, J.; Mann, K.; Markoff, D. M.; Mastroberti, J.; McIntyre, M.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Rimal, D.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Trotter, S.; Ujah, E.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wongjirad, T.; Yen, Y. -R.; Yoo, J.; Yu, C. -H.; Zettlemoyer, J.; Zhang, S. (American Physical Society, 2022-08-02)The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a pulsed source of neutrons and, as a by-product of this operation, an intense source of pulsed neutrinos via stopped-pion decay. The COHERENT collaboration uses this source to investigate coherent elastic neutrino-nucleus scattering and other physics with a suite of detectors. This work includes a description of our geant4 simulation of neutrino production at the SNS and the flux calculation which informs the COHERENT studies. We estimate the uncertainty of this calculation at the ∼10% level based on validation against available low-energy π+ production data.