Browsing by Author "Liu, D."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Baicalein Protects against Type 2 Diabetes via Promoting Islet β-Cell Function in Obese Diabetic MiceFu, Y.; Luo, J.; Jia, Z.; Zhen, W.; Zhou, K.; Gilbert, Elizabeth R.; Liu, D.; Lee, H. (Hindawi, 2014)In both type 1 (T1D) and type 2 diabetes (T2D), the deterioration of glycemic control over time is primarily caused by an inadequate mass and progressive dysfunction of β-cell, leading to the impaired insulin secretion. Here, we show that dietary supplementation of baicalein, a flavone isolated from the roots of Chinese herb Scutellaria baicalensis, improved glucose tolerance and enhanced glucose-stimulated insulin secretion (GSIS) in high-fat diet (HFD-) induced middle-aged obese mice. Baicalein had no effect on food intake, body weight gain, circulating lipid profile, and insulin sensitivity in obese mice. Using another mouse model of type 2 diabetes generated by high-fat diet (HFD) feeding and low doses of streptozotocin injection, we found that baicalein treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in these middle-aged obese diabetic mice, which are associated with the improved islet β-cell survival and mass. In the in vitro studies, baicalein significantly augmented GSIS and promoted viability of insulin-secreting cells and human islets cultured either in the basal medium or under chronic hyperlipidemic condition. These results demonstrate that baicalein may be a naturally occurring antidiabetic agent by directly modulating pancreatic β-cell function.
- Development of a Nongenetic Mouse Model of Type 2 DiabetesGilbert, Elizabeth R.; Fu, Z.; Liu, D. (Hindawi, 2011-01-01)Insulin resistance and loss of beta-cell mass cause Type 2 diabetes (T2D). The objective of this study was to generate a nongenetic mouse model of T2D. Ninety-six 6-month-old C57BL/6N males were assigned to 1 of 12 groups including (1) low-fat diet (LFD; low-fat control; LFC), (2) LFD with 1 i.p. 40 mg/kg BW streptozotocin (STZ) injection, (3), (4), (5), (6) LFD with 2, 3, 4, or 5 STZ injections on consecutive days, respectively, (7) high-fat diet (HFD), (8) HFD with 1 STZ injection, (9), (10), (11), (12) HFD with 2, 3, 4, or 5 STZ injections on consecutive days, respectively. After 4 weeks, serum insulin levels were reduced in HFD mice administered at least 2 STZ injections as compared with HFC. Glucose tolerance was impaired in mice that consumed HFD and received 2, 3, or 4 injections of STZ. Insulin sensitivity in HFD mice was lower than that of LFD mice, regardless of STZ treatment. Islet mass was not affected by diet but was reduced by 50% in mice that received 3 STZ injections. The combination of HFD and three 40 mg/kg STZ injections induced a model with metabolic characteristics of T2D, including peripheral insulin resistance and reduced beta-cell mass.
- An emerging cyberinfrastructure for biodefense pathogen and pathogen-host dataZhang, C.; Crasta, O.; Cammer, S.; Will, R.; Kenyon, R.; Sullivan, D.; Yu, Q.; Sun, W.; Jha, R.; Liu, D.; Xue, T.; Zhang, Y.; Moore, M.; McGarvey, P.; Huang, H.; Chen, Y.; Zhang, J.; Mazumder, R.; Wu, C.; Sobral, Bruno (2008-01)The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAIDs Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and hostpathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.
- Grape powder attenuates the negative effects of GLP-1 receptor antagonism by exendin-3 (9–39) in a normoglycemic mouse modelHaufe, Thomas C.; Gilley, Andrew D.; Goodrich, Katie M.; Ryan, C. M.; Smithson, Andrew Todd; Hulver, Matthew W.; Liu, D.; Neilson, Andrew P. (Royal Society of Chemistry, 2016-05-12)Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP-1) secretion. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption, and increased GLP-1 secretion may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder polyphenols was investigated. Grape powder significantly reduced (p < 0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9–39) compared to sugar-matched control, indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder per kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not impove glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrant further study.
- Measurement of the B0 lifetime and flavor-oscillation frequency using hadronic decays reconstructed in 2019-2021 Belle II dataAblikim, M.; Achasov, M. N.; Adlarson, P.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, Q.; Bai, X. H.; Bai, Y.; Bakina, O.; Ferroli, R. Baldini; Balossino, I.; Ban, Y.; Begzsuren, K.; Bennett, J.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Biernat, J.; Bloms, J.; Bortone, A.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Calcaterra, A.; Cao, G. F.; Cao, N.; Cetin, S. A.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, D. Y.; Chen, G.; Chen, H. S.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Cheng, W.; Cibinetto, G.; Cossio, F.; Cui, X. F.; Dai, H. L.; Dai, J. P.; Dai, X. C.; Dbeyssi, A.; de Boer, R. B.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fritsch, M.; Fu, C. D.; Fu, Y.; Gao, X. L.; Gao, Y.; Gao, Y.; Gao, Y. G.; Garzia, I.; Gersabeck, E. M.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guan, C. Y.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Han, S.; Han, T. T.; Han, T. Z.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Himmelreich, M.; Holtmann, T.; Hou, Y. R.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, L. Q.; Huang, X. T.; Huesken, N.; Hussain, T.; Andersson, W. Ikegami; Imoehl, W.; Irshad, M.; Jaeger, S.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, H. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, S.; Jin, Y.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kappert, R.; Kavatsyuk, M.; Ke, B. C.; Keshk, I. K.; Khoukaz, A.; Kiese, P.; Kiuchi, R.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M. G.; Kuehn, W.; Lane, J. J.; Lange, J. S.; Larin, P.; Lavezzi, L.; Leithoff, H.; Lellmann, M.; Lenz, T.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, H. J.; Li, J. L.; Li, J. Q.; Li, Ke; Li, L. K.; Li, Lei; Li, P. L.; Li, P. R.; Li, W. D.; Li, W. G.; Li, X. H.; Li, X. L.; Li, Z. B.; Li, Z. Y.; Liang, H.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, L. Z.; Libby, J.; Lin, C. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L.; Liu, L. Y.; Liu, Q.; Liu, S. B.; Liu, T.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. D.; Lu, J. G.; Lu, X. L.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, P. W.; Luo, T.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, R. Q.; Ma, R. T.; Ma, X. N.; Ma, X. X.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Maldaner, S.; Malde, S.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Muchnoi, N. Yu; Muramatsu, H.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Pan, Y.; Papenbrock, M.; Pathak, A.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, X. P.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Qu, S. Q.; Rashid, K. H.; Ravindran, K.; Redmer, C. F.; Rivetti, A.; Rodin, V.; Rolo, M.; Rong, G.; Rosner, Ch; Rump, M.; Sarantsev, A.; Savrie, M.; Schelhaas, Y.; Schnier, C.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Shi, H. C.; Shi, R. S.; Shi, X.; Shi, X. D.; Song, J. J.; Song, Q. Q.; Song, Y. X.; Sosio, S.; Spataro, S.; Sui, F. F.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, T.; Sun, W. Y.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. T.; Tan, Y. X.; Tang, C. J.; Tang, G. Y.; Thoren, V.; Tsednee, B.; Uman, I.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D. Y.; Wang, H. P.; Wang, K.; Wang, L. L.; Wang, M.; Wang, M. Z.; Wang, Meng; Wang, W. P.; Wang, X.; Wang, X. F.; Wang, X. L.; Wang, Y.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. Y.; Wang, Ziyi; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Weidner, F.; Wen, H. W.; Wen, S. P.; White, D. J.; Wiedner, U.; Wilkinson, G.; Wolke, M.; Wollenberg, L.; Wu, J. F.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xiao, S. Y.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xing, T. Y.; Xiong, X. A.; Xu, G. F.; Xu, J. J.; Xu, Q. J.; Xu, W.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, R. X.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Yang, Zhi; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, G.; Yu, J. S.; Yu, T.; Yuan, C. Z.; Yuan, W.; Yuan, X. Q.; Yuan, Y.; Yue, C. X.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zhang, B. X.; Zhang, Guangyi; Zhang, H. H.; Zhang, H. Y.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, Jianyu; Zhang, Jiawei; Zhang, L.; Zhang, Lei; Zhang, S.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yan; Zhang, Yao; Zhang, Yi; Zhang, Z. H.; Zhang, Z. Y.; Zhao, G.; Zhao, J.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y.; Zheng, Y. H.; Zhong, B.; Zhong, C.; Zhou, L. P.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhu, A. N.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, W. J.; Zhu, X. L.; Zhu, Y. C.; Zhu, Z. A.; Zou, B. S.; Zou, J. H. (American Physical Society, 2023-05-15)We measure the B0 lifetime and flavor-oscillation frequency using B0→D(∗)-π+ decays collected by the Belle II experiment in asymmetric-energy e+e- collisions produced by the SuperKEKB collider operating at the ϒ(4S) resonance. We fit the decay-time distribution of signal decays, where the initial flavor is determined by identifying the flavor of the other B meson in the event. The results, based on 33000 signal decays reconstructed in a data sample corresponding to 190 fb-1, are τB0=(1.499±0.013±0.008) ps, Δmd=(0.516±0.008±0.005) ps-1, where the first uncertainties are statistical and the second are systematic. These results are consistent with the world-average values.
- NeutrinosGouvea, A. D.; Pitts, K.; Scholberg, K.; Zeller, Geralyn P.; Alonso, J.; Bernstein, A.; Bishai, M.; Elliott, S.; Heeger, K.; Hoffman, K.; Huber, Patrick; Kaufman, L. J.; Kayser, B.; Link, Jonathan M.; Lunardini, C.; Monreal, B.; Morfin, J. G.; Robertson, H.; Tayloe, R.; Tolich, N.; Abazajian, Kevork N.; Akiri, T.; Albright, C. H.; Asaadi, J.; Babu, K. S.; Balantekin, A. B.; Barbeau, P. S.; Bass, M.; Blake, A.; Blondel, A.; Blucher, E.; Bowden, N. S.; Brice, S. J.; Bross, A.; Carls, B.; Cavanna, F.; Choudhary, B.; Coloma, P.; Connolly, A.; Conrad, J.; Convery, M.; Cooper, R. L.; Cowen, D.; Motta, H. D.; Young, T. D.; Lodovico, F. D.; Diwan, M.; Djurcic, Zelimir; Dracos, M.; Dodelson, S.; Efremenko, Y.; Ekelof, T.; Feng, J. L.; Fleming, B.; Formaggio, J. A.; Friedland, A.; Fuller, G.; Gallagher, H.; Geer, S.; Gilchriese, M.; Goodman, M.; Grant, D.; Gratta, G.; Hall, C.; Halzen, F.; Harris, D.; Heffner, M.; Henning, R.; Hewett, J. L.; Hill, R.; Himmel, A.; Horton-Smith, Glenn A.; Karle, A.; Katori, T.; Kearns, E.; Kettell, S. H.; Klein, J.; Kim, Y.; Kim, Y.-K.; Kolomensky, Y. G.; Kordosky, M.; Kudenko, Y.; Kudryavtsev, V. A.; Lande, K.; Lang, K.; Lanza, R.; Lau, K.; Lee, H.; Li, Z.; Littlejohn, B. R.; Lin, C. J.; Liu, D.; Liu, H.; Long, K.; Louis, W.; Luk, K. B.; Marciano, W. J.; Mariani, Camillo; Marshak, M.; Mauger, C.; McDonald, K. T.; McFarland, K. S.; McKeown, R.; Messier, M.; Mishra, S. R.; Mosel, U.; Mumm, P.; Nakaya, T.; Nelson, J. K.; Nygren, D.; Orebi Gann, G. D.; Osta, J.; Palamara, O.; Paley, J.; Papadimitriou, V.; Parke, S.; Parsa, Z.; Patterson, R.; Piepke, A.; Plunkett, R.; Poon, A.; Qian, X.; Raaf, J.; Rameika, R.; Ramsey-Musolf, M.; Rebel, B.; Roser, R.; Rosner, J.; Rott, C.; Rybka, G.; Sahoo, H.; Sangiorgio, S.; Schmitz, D.; Shrock, R.; Shaevitz, Marjorie Hansen; Smith, N.; Smy, M.; Sobel, H.; Sorensen, P.; Sousa, A.; Spitz, Joshua; Strauss, T.; Svoboda, R.; Tanaka, H. A.; Thomas, J.; Tian, X.; Tschirhart, R.; Tully, C.; Bibber, K. V.; Water, R. G. V. D.; Vahle, P.; Vogel, P.; Walter, C. W.; Wark, D.; Wascko, M. O.; Webber, D.; Weerts, H.; White, C.; White, H.; Whitehead, L.; Wilson, R. J.; Winslow, L.; Wongjirad, T.; Worcester, E.; Yokoyama, M.; Yoo, J.; Zimmerman, E. D. (2013-10-16)This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.