Browsing by Author "Liu, H."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the UniverseCollaboration, LBNE; Adams, C.; Adams, D. A.; Akiri, T.; Alion, T.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Anghel, I.; Anjos, JCCD; Antonello, M.; Arrieta-Diaz, E.; Artuso, M.; Asaadi, J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, A. B.; Baller, B.; Baptista, B.; Barker, D.; Barker, G.; Barletta, W. A.; Barr, G.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bellini, V.; Benetti, P. A.; Berger, B. E.; Bergevin, M.; Berman, E.; Berns, H. G.; Bernstein, A.; Bernstein, R.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Bishai, M.; Blake, A.; Blaszczyk, F.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Blusk, S.; Bocean, V.; Boffelli, F.; Boissevain, J. G.; Bolton, T.; Bonesini, M.; Boyd, S.; Brandt, A.; Breedon, R.; Bromberg, C.; Brown, R.; Brunetti, G.; Buchanan, N.; Bugg, B.; Busenitz, J.; Calligarich, E.; Camilleri, Leslie; Carminati, G.; Carr, Rachel E.; Castromonte, C.; Cavanna, F.; Centro, S.; Chen, A.; Chen, H.; Chen, K.; Cherdack, D.; Chi, C. Y.; Childress, S.; Choudhary, B. C.; Christodoulou, G.; Christofferson, C. A.; Church, E.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Coleman, S.; Conrad, Janet M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Cronin-Hennessy, D.; Curioni, A.; Motta, H. D.; Davenne, T.; Davies, G. S.; Dazeley, S.; De, K.; Gouvea, A. D.; Jong, J K. D.; Demuth, D.; Densham, C.; Diwan, M.; Djurcic, Zelimir; Dolfini, R.; Dolph, J.; Drake, G.; Dye, S.; Dyuang, H.; Edmunds, D.; Elliott, S.; Elnimr, M.; Eno, S.; Enomoto, S.; Escobar, C. O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Fava, A.; Felde, J.; Fernandes, S.; Ferroni, F.; Feyzi, F.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Fowler, J.; Fox, W.; Friedland, A.; Fuess, S.; Fujikawa, B. K.; Gallagher, H.; Gandhi, R.; Garvey, G. T.; Gehman, V. M.; Geronimo, G. D.; Gibin, D.; Gill, R.; Gomes, R. A.; Goodman, M. C.; Goon, J.; Graf, N.; Graham, M.; Gran, R.; Grant, C.; Grant, N.; Greenlee, H.; Greenler, L.; Grullon, S.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G. P.; Guenette, R.; Guglielmi, A.; Guzzo, M. M.; Habig, A. T.; Hackenburg, R. W.; Hadavand, H.; Hahn, A.; Haigh, M.; Haines, T.; Handler, T.; Hans, S.; Hartnell, J.; Harton, J.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hellauer, R.; Hewes, J.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Horton-Smith, Glenn A.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Isvan, Z.; Jackson, C.; Jacobsen, J.; Jaffe, D. E.; James, C.; Jen, C. M.; Johnson, M.; Johnson, R.; Johnson, S.; Johnston, W.; Johnstone, J.; Jones, B. J. P.; Jostlein, H.; Junk, T.; Kadel, R.; Kaess, K.; Karagiorgi, Georgia S.; Kaspar, J.; Katori, T.; Kayser, B.; Kearns, E.; Keener, P.; Kemp, E.; Kettell, S. H.; Kirby, M.; Klein, J.; Koizumi, G.; Kopp, S.; Kormos, L.; Kropp, W.; Kudryavtsev, V. A.; Kumar, A.; Kumar, J.; Kutter, T.; Zia, F. L.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Lanza, R.; Latorre, T.; Learned, J.; Lee, D.; Lee, K.; Li, Q.; Li, S.; Li, Y.; Li, Z.; Libo, J.; Linden, S.; Ling, J.; Link, Jonathan M.; Littenberg, L.; Liu, H.; Liu, Q.; Liu, T.; Losecco, J.; Louis, W.; Lundberg, B.; Lundin, T.; Lundy, J.; Machado, A. A.; Maesano, C.; Magill, S.; Mahler, G.; Malon, D.; Malys, S.; Mammoliti, F.; Mandal, S. K.; Mann, A.; Mantsch, P.; Marchionni, A.; Marciano, W. J.; Mariani, Camillo; Maricic, Jelena; Marino, A.; Marshak, M.; Marshall, J.; Matsuno, S.; Mauger, C.; Mavrokoridis, K.; Mayer, N.; McCauley, N.; McCluskey, E.; McDonald, K.; McFarland, K. S.; McKee, D.; McKeown, R.; McTaggart, R.; Mehdiyev, R.; Mei, D.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Messier, M.; Metcalf, W.; Milincic, R.; Miller, W.; Mills, G.; Mishra, S. R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moore, C.; Morfin, J.; Morgan, B.; Morse, W.; Moss, Z.; Moura, C. A.; Mufson, S.; Muller, D.; Musser, J.; Naples, D.; Napolitano, J.; Newcomer, M.; Nichol, R.; Nicholls, T.; Niner, E.; Norris, B.; Nowak, J.; O'Keeffe, H.; Oliveira, R.; Olson, T.; Page, B.; Pakvasa, S.; Palamara, O.; Paley, J.; Paolone, V.; Papadimitriou, V.; Park, S.; Parsa, Z.; Partyka, K.; Paulos, B.; Pavlovic, Z.; Peeters, S.; Perch, A.; Perkin, J. D.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Polly, C. C.; Pordes, S.; Potekhin, M.; Potenza, R.; Prakash, A.; Prokofiev, O.; Qian, X.; Raaf, J. L.; Radeka, V.; Rakhno, I.; Ramachers, Y. A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G. L.; Ratoff, P.; Ravindra, S.; Rebel, B.; Reichenbacher, J.; Reitzner, D.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Ronquest, M.; Rosen, M.; Rossella, M.; Rubbia, C.; Rucinski, R.; Sahijpal, S.; Sahoo, H.; Sala, P.; Salmiera, D.; Samios, N.; Sanchez, Maria Cristina; Scaramelli, A.; Schellman, H.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Segreto, E.; Seibert, S.; Sexton-Kennedy, L.; Shaevitz, Marjorie Hansen; Shanahan, P.; Sharma, R.; Shaw, T.; Simos, N.; Singh, V.; Sinnis, G.; Sippach, W.; Skwarnicki, T.; Smy, M.; Sobel, H.; Soderberg, M.; Sondericker, J.; Sondheim, W.; Sousa, A.; Spooner, N. J. C.; Stancari, M.; Stancu, Ion; Stefan, D.; Stefanik, A.; Stewart, J.; Stone, S.; Strait, J.; Strait, M.; Striganov, S.; Sullivan, G.; Sun, Y.; Suter, L.; Svenson, A.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Szydagis, M.; Söldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tayloe, R.; Taylor, C.; Taylor, D.; Teymourian, A.; Themann, H.; Thiesse, M.; Thomas, J.; Thompson, L. F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Toki, W.; Tolich, N.; Torti, M.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y. T.; Tull, C.; Tzanov, M.; Urheim, J.; Usman, S.; Vagins, M. R.; Valdiviesso, G. A.; Berg, R. V.; Water, R. V. D.; Gemmeren, P. V.; Varanini, F.; Varner, G.; Vaziri, K.; Velev, G.; Ventura, S.; Vignoli, C.; Viren, B.; Wahl, D.; Waldron, A.; Walter, C. W.; Wang, H.; Wang, W.; Warburton, K.; Warner, D.; Wasserman, R.; Watson, B.; Weber, A.; Wei, W.; Wells, D.; Wetstein, M.; White, A.; White, H.; Whitehead, L.; Whittington, D.; Willhite, J.; Wilson, R. J.; Winslow, L.; Wood, K.; Worcester, E.; Worcester, M.; Xin, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yu, B.; Yu, J.; Yuan, T.; Zani, A.; Zeller, Geralyn P.; Zhang, C.; Zimmerman, E. D.; Zwaska, R. (2014-04-15)The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.
- NeutrinosGouvea, A. D.; Pitts, K.; Scholberg, K.; Zeller, Geralyn P.; Alonso, J.; Bernstein, A.; Bishai, M.; Elliott, S.; Heeger, K.; Hoffman, K.; Huber, Patrick; Kaufman, L. J.; Kayser, B.; Link, Jonathan M.; Lunardini, C.; Monreal, B.; Morfin, J. G.; Robertson, H.; Tayloe, R.; Tolich, N.; Abazajian, Kevork N.; Akiri, T.; Albright, C. H.; Asaadi, J.; Babu, K. S.; Balantekin, A. B.; Barbeau, P. S.; Bass, M.; Blake, A.; Blondel, A.; Blucher, E.; Bowden, N. S.; Brice, S. J.; Bross, A.; Carls, B.; Cavanna, F.; Choudhary, B.; Coloma, P.; Connolly, A.; Conrad, J.; Convery, M.; Cooper, R. L.; Cowen, D.; Motta, H. D.; Young, T. D.; Lodovico, F. D.; Diwan, M.; Djurcic, Zelimir; Dracos, M.; Dodelson, S.; Efremenko, Y.; Ekelof, T.; Feng, J. L.; Fleming, B.; Formaggio, J. A.; Friedland, A.; Fuller, G.; Gallagher, H.; Geer, S.; Gilchriese, M.; Goodman, M.; Grant, D.; Gratta, G.; Hall, C.; Halzen, F.; Harris, D.; Heffner, M.; Henning, R.; Hewett, J. L.; Hill, R.; Himmel, A.; Horton-Smith, Glenn A.; Karle, A.; Katori, T.; Kearns, E.; Kettell, S. H.; Klein, J.; Kim, Y.; Kim, Y.-K.; Kolomensky, Y. G.; Kordosky, M.; Kudenko, Y.; Kudryavtsev, V. A.; Lande, K.; Lang, K.; Lanza, R.; Lau, K.; Lee, H.; Li, Z.; Littlejohn, B. R.; Lin, C. J.; Liu, D.; Liu, H.; Long, K.; Louis, W.; Luk, K. B.; Marciano, W. J.; Mariani, Camillo; Marshak, M.; Mauger, C.; McDonald, K. T.; McFarland, K. S.; McKeown, R.; Messier, M.; Mishra, S. R.; Mosel, U.; Mumm, P.; Nakaya, T.; Nelson, J. K.; Nygren, D.; Orebi Gann, G. D.; Osta, J.; Palamara, O.; Paley, J.; Papadimitriou, V.; Parke, S.; Parsa, Z.; Patterson, R.; Piepke, A.; Plunkett, R.; Poon, A.; Qian, X.; Raaf, J.; Rameika, R.; Ramsey-Musolf, M.; Rebel, B.; Roser, R.; Rosner, J.; Rott, C.; Rybka, G.; Sahoo, H.; Sangiorgio, S.; Schmitz, D.; Shrock, R.; Shaevitz, Marjorie Hansen; Smith, N.; Smy, M.; Sobel, H.; Sorensen, P.; Sousa, A.; Spitz, Joshua; Strauss, T.; Svoboda, R.; Tanaka, H. A.; Thomas, J.; Tian, X.; Tschirhart, R.; Tully, C.; Bibber, K. V.; Water, R. G. V. D.; Vahle, P.; Vogel, P.; Walter, C. W.; Wark, D.; Wascko, M. O.; Webber, D.; Weerts, H.; White, C.; White, H.; Whitehead, L.; Wilson, R. J.; Winslow, L.; Wongjirad, T.; Worcester, E.; Yokoyama, M.; Yoo, J.; Zimmerman, E. D. (2013-10-16)This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.
- Observation of Electron-Antineutrino Disappearance at Daya BayAn, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R. L.; Cai, B.; Cao, G. F.; Cao, J.; Carr, Rachel E.; Chan, W. T.; Chang, J. F.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y.; Chen, Y. X.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R. L.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Ho, T. H.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, H. X.; Huang, H. Z.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, Patrick; Isvan, Z.; Jaffe, D. E.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Leitner, R.; Leung, J. K. C.; Leung, K. Y.; Lewis, C. A.; Li, B.; Li, F.; Li, G. S.; Li, J.; Li, Q. J.; Li, S. F.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, S. K.; Lin, S. X.; Lin, Y. C.; Ling, J. J.; Link, Jonathan M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Oh, D.; Olshevski, A.; Pagac, A.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, Leo E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Seilhan, B.; Shao, B. B.; Shih, K.; Steiner, H.; Stoler, P.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tanaka, H. K.; Tang, X.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J.; Xu, J. L.; Xu, W.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, L.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, Z. Y.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, K.; Zhang, Q. X.; Zhang, S. H.; Zhang, Y. C.; Zhang, Y. H. Percival; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H. (American Physical Society, 2012-04-23)The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle 0(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton-GW(th)-day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R = 0.940 +/- 0.011(stat.) +/- 0.004(syst.). A rate-only analysis finds sin(2)2 theta(13) = 0.092 +/- 0.016(stat.) +/- 0.005(syst.) in a three-neutrino framework.
- Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution TheoryParker, E. A.; Grant, Stanley B.; Cao, Y.; Rippy, Megan A.; McGuire, Kevin J.; Holden, P. A.; Feraud, M.; Avasarala, S.; Liu, H.; Hung, W. C.; Rugh, M.; Jay, J.; Peng, J.; Shao, S.; Li, D. (2021-02)In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or "green" storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems.