Browsing by Author "Lutz, D."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- The Complex Physics of Dusty Star-Forming Galaxies at High Redshifts as Revealed by Herschel and SpitzerLo Faro, B.; Franceschini, A.; Vaccari, M.; Silva, L.; Rodighiero, G.; Berta, S.; Bock, J.; Burgarella, D.; Buat, V.; Cava, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Feltre, A.; Solares, E. A. G.; Hurley, P.; Lutz, D.; Magdis, G. E.; Magnelli, B.; Marchetti, L.; Oliver, S. J.; Page, M. J.; Popesso, P.; Pozzi, F.; Rigopoulou, D.; Rowan-Robinson, M.; Roseboom, I. G.; Scott, D.; Smith, A. J.; Symeonidis, M.; Wang, L.; Wuyts, S. (IOP Publishing Ltd., 2013-01)We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z similar to 1 and 2 selected in GOODS-S with 24 mu m fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR <= 100 M-circle dot yr(-1)). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history. We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by Delta A(V) similar to 0.81 and 1.14) and higher stellar masses (by Delta log(M-*) similar to 0.16 and 0.36 dex) for z similar to 1 and z similar to 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from LIR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through "cirrus" emission (similar to 73% and similar to 66% of the total L-IR for z similar to 1 and z similar to 2 (U)LIRGs, respectively).
- The evolution of the dust and gas content in galaxiesSantini, P.; Maiolino, R.; Magnelli, B.; Lutz, D.; Lamastra, A.; Causi, G. L.; Eales, S.; Andreani, P.; Berta, S.; Buat, V.; Cooray, A.; Cresci, G.; Daddi, E.; Farrah, D.; Fontana, A.; Franceschini, A.; Genzel, R.; Granato, G.; Grazian, A.; Le Floc'h, E.; Magdis, G. E.; Magliocchetti, M.; Mannucci, F.; Menci, N.; Nordon, R.; Oliver, S.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Rosario, D. J.; Salvato, M.; Scott, D.; Silva, L.; Tacconi, L.; Viero, M.; Wang, L.; Wuyts, S.; Xu, K. (EDP SCIENCES, 2014-02)We use deep Herschel observations taken with both PACS and SPIRE imaging cameras to estimate the dust mass of a sample of galaxies extracted from the GOODS-S, GOODS-N and the COSMOS fields. We divide the redshift-stellar mass (M-star)-star formation rate (SFR) parameter space into small bins and investigate average properties over this grid. In the first part of the work we investigate the scaling relations between dust mass, stellar mass and SFR out to z = 2.5. No clear evolution of the dust mass with redshift is observed at a given SFR and stellar mass. We find a tight correlation between the SFR and the dust mass, which, under reasonable assumptions, is likely a consequence of the Schmidt-Kennicutt (S-K) relation. The previously observed correlation between the stellar content and the dust content flattens or sometimes disappears when considering galaxies with the same SFR. Our finding suggests that most of the correlation between dust mass and stellar mass obtained by previous studies is likely a consequence of the correlation between the dust mass and the SFR combined with the main sequence, i.e., the tight relation observed between the stellar mass and the SFR and followed by the majority of star-forming galaxies. We then investigate the gas content as inferred from dust mass measurements. We convert the dust mass into gas mass by assuming that the dust-to-gas ratio scales linearly with the gas metallicity (as supported by many observations). For normal star-forming galaxies (on the main sequence) the inferred relation between the SFR and the gas mass (integrated S-K relation) broadly agrees with the results of previous studies based on CO measurements, despite the completely different approaches. We observe that all galaxies in the sample follow, within uncertainties, the same S-K relation. However, when investigated in redshift intervals, the S-K relation shows a moderate, but significant redshift evolution. The bulk of the galaxy population at z similar to 2 converts gas into stars with an efficiency (star formation efficiency, SFE = SFR/M-gas, equal to the inverse of the depletion time) about 5 times higher than at z similar to 0. However, it is not clear what fraction of such variation of the SFE is due to an intrinsic redshift evolution and what fraction is simply a consequence of high-z galaxies having, on average, higher SFR, combined with the super-linear slope of the S-K relation (while other studies find a linear slope). We confirm that the gas fraction (f(gas) = M-gas/(M-gas + M-star)) decreases with stellar mass and increases with the SFR. We observe no evolution with redshift once M-star and SFR are fixed. We explain these trends by introducing a universal relation between gas fraction, stellar mass and SFR that does not evolve with redshift, at least out to z similar to 2.5. Galaxies move across this relation as their gas content evolves across the cosmic epochs. We use the 3D fundamental f(gas)-M-star-SFR relation, along with the evolution of the main sequence with redshift, to estimate the evolution of the gas fraction in the average population of galaxies as a function of redshift and as a function of stellar mass: we find that M-star greater than or similar to 10(11) M-circle dot galaxies show the strongest evolution at z greater than or similar to 1. 3 and a flatter trend at lower redshift, while f(gas) decreases more regularly over the entire redshift range probed in M-star less than or similar to 10(11) M-circle dot galaxies, in agreement with a downsizing scenario.
- Herschel PEP/HerMES: the redshift evolution (0 <= z <= 4) of dust attenuation and of the total (UV plus IR) star formation rate densityBurgarella, D.; Gruppioni, C.; Cucciati, O.; Heinis, S.; Berta, S.; Bethermin, M.; Bock, J.; Cooray, A.; Dunlop, J. S.; Farrah, D.; Franceschini, A.; Le Floc'h, E.; Lutz, D.; Magnelli, B.; Nordon, R.; Oliver, S. J.; Page, M. J.; Popesso, P.; Pozzi, F.; Riguccini, L.; Vaccari, M.; Viero, M. (EDP Sciences, 2013-06)Using new homogeneous luminosity functions (LFs) in the far-ultraviolet (FUV) from VVDS and in the far-infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we were able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRDTOT). By integrating SFRDTOT, we followed the mass building and analyzed the redshift evolution of the stellar mass density (SMD). This article aims at providing a complete view of star formation from the local Universe to z similar to 4 and, using assumptions on earlier star formation history, compares this evolution with previously published data in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. Our main conclusions are that: 1) the dust attenuation A(FUV) is found to increase from z = 0 to z similar to 1.2 and then starts to decrease until our last data point at z = 3 : 6; 2) the estimated SFRD confirms published results to z similar to 2. At z > 2, we observe either a plateau or a small increase up to z similar to 3 and then a likely decrease up to z = 3.6; 3) the peak of AFUV is delayed with respect to the plateau of SFRDTOT and a probable origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (exponential rise and linear rise with time) for the evolution of the star formation density from z = 3 : 6 to z(form) = 10, we integrated SFRDTOT and obtained a good agreement with the published SMDs.
- A Population of z > 2 Far-Infrared Herschel-Spire-Selected StarburstsCasey, C. M.; Berta, S.; Bethermin, M.; Bock, J.; Bridge, C. R.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; Le Floc'h, E.; Lutz, D.; Magdis, G. E.; Magnelli, B.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Rigopoulou, D.; Riguccini, L.; Roseboom, I. G.; Sanders, D. B.; Scott, D.; Seymour, N.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wardlow, J. (IOP Publishing Ltd., 2012-12)We present spectroscopic observations for a sample of 36 Herschel-Spire 250-500 mu m selected galaxies (HSGs) at 2 < z < 5 from the Herschel Multi-tiered Extragalactic Survey. Redshifts are confirmed as part of a large redshift survey of Herschel-Spire-selected sources covering similar to 0.93 deg(2) in six extragalactic legacy fields. Observations were taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. Precise astrometry, needed for spectroscopic follow-up, is determined by identification of counterparts at 24 mu m or 1.4 GHz using a cross-identification likelihood matching method. Individual source luminosities range from log(L-IR/L-circle dot) = 12.5-13.6 (corresponding to star formation rates (SFRs) 500-9000M(circle dot) yr(-1), assuming a Salpeter initial mass function), constituting some of the most intrinsically luminous, distant infrared galaxies discovered thus far. We present both individual and composite rest-frame ultraviolet spectra and infrared spectral energy distributions. The selection of these HSGs is reproducible and well characterized across large areas of the sky in contrast to most z > 2 HyLIRGs in the literature, which are detected serendipitously or via tailored surveys searching only for high-z HyLIRGs; therefore, we can place lower limits on the contribution of HSGs to the cosmic star formation rate density (SFRD) at (7 +/- 2) x 10(-3) M-circle dot yr(-1) h(3) Mpc(-3) at z similar to 2.5, which is > 10% of the estimated total SFRD of the universe from optical surveys. The contribution at z similar to 4 has a lower limit of 3 x 10(-3) M-circle dot yr(-1) h(3) Mpc(-3), greater than or similar to 20% of the estimated total SFRD. This highlights the importance of extremely infrared-luminous galaxies with high SFRs to the buildup of stellar mass, even at the earliest epochs.
- A redshift survey of Herschel far-infrared selected starbursts and implications for obscured star formationCasey, C. M.; Berta, S.; Bethermin, M.; Bock, J.; Bridge, C. R.; Budynkiewicz, J.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; Le Floc'h, E.; Lutz, D.; Magdis, G. E.; Magnelli, B.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Rigopoulou, D.; Riguccini, L.; Roseboom, I. G.; Sanders, D. B.; Scott, D.; Seymour, N.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wardlow, J. (IOP Publishing Ltd., 2012-12)We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 mu m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z similar to 5. We measure more significant disagreement between photometric and spectroscopic redshifts ( = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 mu m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q(IR) proportional to (1 + z)(-0.30 +/- 0.02) at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 mu m extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z >> 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.