Browsing by Author "Lux, Matthew W."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Adaptive Imaging Cytometry to Estimate Parameters of Gene Networks Models in Systems and Synthetic BiologyBall, David A.; Lux, Matthew W.; Adames, Neil R.; Peccoud, Jean (PLOS, 2014-09-11)The use of microfluidics in live cell imaging allows the acquisition of dense time-series from individual cells that can be perturbed through computer-controlled changes of growth medium. Systems and synthetic biologists frequently perform gene expression studies that require changes in growth conditions to characterize the stability of switches, the transfer function of a genetic device, or the oscillations of gene networks. It is rarely possible to know a priori at what times the various changes should be made, and the success of the experiment is unknown until all of the image processing is completed well after the completion of the experiment. This results in wasted time and resources, due to the need to repeat the experiment to fine-tune the imaging parameters. To overcome this limitation, we have developed an adaptive imaging platform called GenoSIGHT that processes images as they are recorded, and uses the resulting data to make real-time adjustments to experimental conditions. We have validated this closed-loop control of the experiment using galactose-inducible expression of the yellow fluorescent protein Venus in Saccharomyces cerevisiae. We show that adaptive imaging improves the reproducibility of gene expression data resulting in more accurate estimates of gene network parameters while increasing productivity ten-fold.
- Estimation of gene network parameters from imaging cytometry dataLux, Matthew W. (Virginia Tech, 2013-05-23)Synthetic biology endeavors to forward engineer genetic circuits with novel function. A major inspiration for the field has been the enormous success in the engineering of digital electronic circuits over the past half century. This dissertation approaches synthetic biology from the perspective of the engineering design cycle, a concept ubiquitous across many engineering disciplines. First, an analysis of the state of the engineering design cycle in synthetic biology is presented, pointing out the most limiting challenges currently facing the field. Second, a principle commonly used in electronics to weigh the tradeoffs between hardware and software implementations of a function, called co-design, is applied to synthetic biology. Designs to implement a specific logical function in three distinct domains are proposed and their pros and cons weighed. Third, automatic transitioning between an abstract design, its physical implementation, and accurate models of the corresponding system are critical for success in synthetic biology. We present a framework for accomplishing this task and demonstrate how it can be used to explore a design space. A major limitation of the aforementioned approach is that adequate parameter values for the performance of genetic components do not yet exist. Thus far, it has not been possible to uniquely attribute the function of a device to the function of the individual components in a way that enables accurate prediction of the function of new devices assembled from the same components. This lack presents a major challenge to rapid progression through the design cycle. We address this challenge by first collecting high time-resolution fluorescence trajectories of individual cells expressing a fluorescent protein, as well as snapshots of the number of corresponding mRNA molecules per cell. We then leverage the information embedded in the cell-cell variability of the population to extract parameter values for a stochastic model of gene expression more complex than typically used. Such analysis opens the door for models of genetic components that can more reliably predict the function of new combinations of these basic components.
- GenoLIB: a database of biological parts derived from a library of common plasmid featuresAdames, Neil R.; Wilson, Mandy L.; Fang, Gang; Lux, Matthew W.; Glick, Benjamin S.; Peccoud, Jean (2015-05-26)Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of similar to 2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects.
- Modeling structure-function relationships in synthetic DNA sequences using attribute grammarsCai, Yizhi; Lux, Matthew W.; Adam, Laura; Peccoud, Jean (Public Library of Science, 2012-04-12)Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology.
- PLoS Computational Biology Conference Postcards from PSB 2010Datta, R. S.; Lux, Matthew W.; Bourne, Philip E. (Public Library of Science, 2010-04-29)Welcome to PLoS Conference Postcards. Postcards, as the name suggests, are designed to vividly recount to those not at a conference what happened at the event that was scientifically noteworthy and therefore make the reader wish they had attended. Postcards aim to be a departure from routine conference reports since they are written through the young and enthusiastic eyes of graduate students and postdoctoral fellows who intentionally focus on a small subset of what transpires at the meeting—from keynotes to research paper presentations to posters to working group discussions