Browsing by Author "Mena Aguilar, Didier Philippe"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Biochemical Characterization of Thermocrispum agreste TheA: A Flavin-Dependent N-hydroxylating EnzymeMena Aguilar, Didier Philippe (Virginia Tech, 2018-06-26)N-hydroxylating monooxygenases (NMOs) are Class B flavin-dependent monooxygenases found only in fungi and bacteria. These enzymes catalyze the hydroxylation of nucleophilic primary amines, such as those found in histamine, L-ornithine, L-lysine, and small aliphatic diamines. The hydroxamate moiety produced by this reaction is key for the production of siderophores, small chelating compounds that allow survival in iron limiting conditions. NMOs involved in siderophore biosynthesis have been shown to be essential for pathogenesis in organisms such as Aspergillus fumigatus, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. Therefore, NMOs are considered novel drug targets for the treatment associated with these diseases. Herein we present the characterization of TheA, an NMO from Thermocrispum agreste. The enzyme mechanism was studied using steady state kinetic measurements, thermostability, and stopped flow spectrophotometry assays. Using these techniques, the catalytic rates, substrate binding affinities, thermal stability, and coenzyme specificities were determined. Additionally, NADPH analogues were produced to use as tools to study FAD reduction in NMOs. An unspecific reduction reaction of NADP+ using NaB2H4 yielded [6-2H]-NADPH, [2-2H]-NADPH, and [4-2H]-NADPH. Compound identity was confirmed by mass spectrometry and unidimensional proton nuclear magnetic resonance (NMR). Results presented in this thesis lay the foundation for future studies of NMOs using NADPH analogues. In conjunction, these results will improve the general knowledge and understanding of flavoenzymes, ornithine monooxygenases, and their associated mechanisms.
- Proteomic and genomic characterization of the influence of copper on Legionella pneumophila and the drinking water microbiomeMena Aguilar, Didier Philippe (Virginia Tech, 2022-04-12)Legionella pneumophila is a pathogen that can proliferate in premise (i.e., building) plumbing and, when aerosolized during water use, infect the lungs of exposed individuals and cause a deadly form of pneumonia known as Legionnaires' disease. Given that it is one of the primary sources of tap-water associated disease throughout much of the world, this organism has been the subject of intense research, ranging from aiming to understand key aspects of its physiology that allow it to proliferate in premise plumbing, to the specific virulence factors that make it so infectious to humans. The work presented here starts with a comprehensive review of published studies related to the L. pneumophila proteome, i.e., the set of expressed proteins associated with a given strain under a given set of environmental conditions, showing how the field has progressed in parallel to improvements in mass spectrometry technologies and how proteomics can be used as a tool to understand this unique and important organism. Copper is a natural antimicrobial that can be present in drinking water due to passive release from copper pipes or intentionally dosed (e.g., copper-silver ionization systems) for microbial control. However, some L. pneumophila strains have recently been found to exhibit copper resistance, an adaptive process that is not fully understood at the physiological level. Chapter Two describes the copper survivability of three outbreak-associated strains of L. pneumophila and examines the copper-induced proteome of QC1, a strain found to display high resistance to copper. Pairwise comparisons of the proteomes of copper-resistant and copper sensitive strains indicated that L. pneumophila QC1 adapts to copper exposure via the induction of redox and metal homeostasis proteins, while concomitantly inducing motility and pathogenesis related proteins, suggestive that copper induces a search for a host protozoan strain for protection. In 2014 and 2015, Flint, Michigan experienced the largest per capita community-wide Legionnaires' Disease outbreak in US history. The outbreak was associated with a change in the source of the municipal drinking water supply from Detroit water, which was sourced from the Great Lakes and subject to appropriate corrosion control, to the Flint River, which was not appropriately controlled for corrosivity. The underlying drivers of this outbreak have been debated and include: elevated iron in the water serving as a nutrient for L. pneumophila, diminished chlorine in the water due to reactions with iron, reduced copper in the water due to shifts in pH influencing release from copper pipes, and shifts in potentially key components of the microbial community. In Chapter Three of this dissertation, we employ controlled microcosm studies to establish a fundamental understanding of interactive effects of pipe material and water of varying iron bioavailability (ferric chloride, ferrous chloride and ferric pyrophosphate) on the microbial community and its relationship with L. pneumophila numbers. The combination of copper pipes and Flint River water decreased the diversity of the microbial community to a larger degree than copper pipes with Detroit water, implying greater copper bioavailability in the former condition. Several Order were found to be significantly associated with high or low numbers of culturable L. pneumophila recovered from the microcosms. Most notably, the Order Pseudomonadales was significantly associated to the reactors with low culturable L. pneumophila. This order contains Pseudomonas species known to inhibit the growth of L. pneumophila. The findings reported in this dissertation can be used to develop more informed management practices for drinking water systems to reduce the risk of Legionnaires' Disease outbreaks associated with premise plumbing. Specifically, 1) copper might be inducing a more pathogenic form of copper resistant L. pneumophila, 2) the use of corrosive control in municipal water systems goes beyond the influence on lead and copper pipes, but also on the microbial community, which in part influences L. pneumophila, and 3) there are organisms, such as Pseudomonadales species, associated with environments with low culturable L. pneumophila which might be introduced to the drinking water systems as probiotics.