Browsing by Author "Muthanna, Chittiappa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Effects of Free Stream Turbulence on the Flow Field through a Compressor CascadeMuthanna, Chittiappa (Virginia Tech, 2002-05-24)The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1º, a stagger angle of 56.9º, and a solidity of 1.08. The final turning angle of the cascade was 11.8º. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca= 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca= 0.77.
- Flowfield Downstream of a Compressor Cascade with Tip LeakageMuthanna, Chittiappa (Virginia Tech, 1998-11-20)An 8 blade, 7 passage linear compressor cascade with tip leakage was built. The flowfield downstream of the cascade was measured using four sensor hot-wire anemometers, from which the mean velocity field , the turbulence stress field and velocity spectra were obtained. Oil flow visualizations were done on the endwall underneath the blade row. Also studied were the effects of tip gap height, and blade boundary layer trip variations. The results revealed the presence of two distinct vortical structures in the flow. The tip leakage vortex is formed due to the roll up the tip flow as it exits the tip gap region. A second vortex, counter-rotating when compared to the tip leakage vortex, is formed due to the separation of the flow leaving the tip gap from the endwall. Increasing the tip gap height increases the strength of the tip leakage vortex, and vice versa. Changing the boundary layer trip had no effect on the flowfield due the fact that boundary layers on the blade surface had separated. As the vortices develop downstream, the tip leakage vortex convects into the passage "pushing" the counter rotating vortex with it. As it does so, the tip leakage vortex dominates the endwall flow region, and is responsible for most of the turbulence present in the downstream flow field. This turbulence production is primarily due to axial velocity gradients in the flow, and not due to the circulatory motion of the vortex. Velocity spectra taken in the core of the vortex show the broadband characteristics typical of such turbulent flows. The results also revealed that the wakes of the blades exhibit characteristics of two-dimensional plane wakes. The wake decays much faster than the vortex. Velocity spectra taken in the wake region show the broadband characteristics of such turbulent flows, and also suggest that there might be some coherent motion in the wake as a result of vortex shedding from the trailing edge of the blades. The present study reveals the complex nature of such flows, and should provide valuable information in helping to understand them. This study was made possible with support from NASA Langley through grant number NAG-1-1801 under the supervision of Dr. Joe Posey