Browsing by Author "Niu, Liqian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurementChin, Ai Lin; Jiang, Shan; Jang, Eungyo; Niu, Liqian; Li, Liwu; Jia, Xiaoting; Tong, Rong (Nature Research, 2021)Immune checkpoint blockade antibodies have promising clinical applications but suffer from disadvantages such as severe toxicities and moderate patient–response rates. None of the current delivery strategies, including local administration aiming to avoid systemic toxicities, can sustainably supply drugs over the course of weeks; adjustment of drug dose, either to lower systemic toxicities or to augment therapeutic response, is not possible. Herein, we develop an implantable miniaturized device using electrode-embedded optical fibers with both local delivery and measurement capabilities over the course of a few weeks. The combination of local immune checkpoint blockade antibodies delivery via this device with photodynamic therapy elicits a sustained anti-tumor immunity in multiple tumor models. Our device uses tumor impedance measurement for timely presentation of treatment outcomes, and allows modifications to the delivered drugs and their concentrations, rendering this device potentially useful for on-demand delivery of potent immunotherapeutics without exacerbating toxicities.
- Locally Administered Particle-Anchored Cytokines Safely Enhance Cancer ImmunotherapyNiu, Liqian (Virginia Tech, 2024-05-16)Cancer immunotherapy has long been proposed as a powerful approach to curing tumors, based on the natural function of the immune system in protecting its host with specificity, thus holding the potential for developing long-term memory that prevents tumor recurrence. However, the immunosuppressive feature of the tumor microenvironment prevents the patients' own immune system from functioning normally in the fight against cancer. As one of the most potent cancer immunotherapies, immunostimulatory cytokines have been shown to elicit anti-tumor immune responses in preclinical studies, but their clinical application is limited by severe immune-related adverse events upon systemic administration. None of the current delivery strategies can fully address issues of toxicities and sustainably supply cytokines over the course of a few days without compromising cytokines' structural integrity. Herein, we have developed a novel formulation to anchor potent cytokine molecules to the surface of large-sized particles (1 µm) for local cancer treatment. The cytokines are confined in tumors and have minimal systemic exposure over a few days following intratumoral injection, thereby eliciting anti-tumor immunity while avoiding the systemic toxicities caused by the circulating cytokines. Such particle-anchored cytokines can be synergistic with other immunotherapies, including immune checkpoint blockade antibodies and tumor antigens, to safely promote tumor regressions in various syngeneic tumor models and genetically engineered murine tumor models.
- Noncovalently particle-anchored cytokines with prolonged tumor retention safely elicit potent antitumor immunityNiu, Liqian; Jang, Eungyo; Chin, Ai Lin; Huo, Ziyu; Wang, Wenbo; Cai, Wenjun; Rong, Tong (American Association for the Advancement of Science, 2024-04-19)Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines’ immunostimulatory properties from their systemic toxicities for potential clinical application.