Browsing by Author "Nsoesie, Elaine O."
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- A Dirichlet process model for classifying and forecasting epidemic curvesNsoesie, Elaine O.; Leman, Scotland C.; Marathe, M. V. (Biomed Central, 2014-01-09)
- Enhancing disease surveillance with novel data streams: challenges and opportunitiesAlthouse, Benjamin M.; Scarpino, Samuel V.; Meyers, Lauren Ancel; Ayers, John W.; Bargsten, Marisa; Baumbach, Joan; Brownstein, John S.; Castro, Lauren; Clapham, Hannah; Cummings, Derek A. T.; Del Valle, Sara; Eubank, Stephen; Fairchild, Geoffrey; Finelli, Lyn; Generous, Nicholas; George, Dylan; Harper, David R.; Hebert-Dufresne, Laurent; Johansson, Michael A.; Konty, Kevin; Lipsitch, Marc; Millinovich, Gabriel; Miller, Joseph D.; Nsoesie, Elaine O.; Olson, Donald R.; Paul, Michael; Priedhorsky, Reid; Read, Jonathan M.; Rodriguez-Barraquer, Isabel; Smith, Derek J.; Stefansen, Christian; Swerdlow, David L.; Thompson, Deborah; Vespignani, Alessandro; Wesolowski, Amy; Polgreen, Philip M. (Springer, 2015)Novel data streams (NDS), such as web search data or social media updates, hold promise for enhancing the capabilities of public health surveillance. In this paper, we outline a conceptual framework for integrating NDS into current public health surveillance. Our approach focuses on two key questions: What are the opportunities for using NDS and what are the minimal tests of validity and utility that must be applied when using NDS? Identifying these opportunities will necessitate the involvement of public health authorities and an appreciation of the diversity of objectives and scales across agencies at different levels (local, state, national, international). We present the case that clearly articulating surveillance objectives and systematically evaluating NDS and comparing the performance of NDS to existing surveillance data and alternative NDS data is critical and has not sufficiently been addressed in many applications of NDS currently in the literature.
- Guess Who's Not Coming to Dinner? Evaluating Online Restaurant Reservations for Disease SurveillanceNsoesie, Elaine O.; Buckeridge, David L.; Brownstein, John S. (2014-01)Background: Alternative data sources are used increasingly to augment traditional public health surveillance systems. Examples include over-the-counter medication sales and school absenteeism. Objective: We sought to determine if an increase in restaurant table availabilities was associated with an increase in disease incidence, specifically influenza-like illness (ILI). Methods: Restaurant table availability was monitored using OpenTable, an online restaurant table reservation site. A daily search was performed for restaurants with available tables for 2 at the hour and at half past the hour for 22 distinct times: between 11:00 am-3:30 pm for lunch and between 6:00-11:30 PM for dinner. In the United States, we examined table availability for restaurants in Boston, Atlanta, Baltimore, and Miami. For Mexico, we studied table availabilities in Cancun, Mexico City, Puebla, Monterrey, and Guadalajara. Time series of restaurant use was compared with Google Flu Trends and ILI at the state and national levels for the United States and Mexico using the cross-correlation function. Results: Differences in restaurant use were observed across sampling times and regions. We also noted similarities in time series trends between data on influenza activity and restaurant use. In some settings, significant correlations greater than 70% were noted between data on restaurant use and ILI trends. Conclusions: This study introduces and demonstrates the potential value of restaurant use data for event surveillance.
- Modeling to Predict Cases of Hantavirus Pulmonary Syndrome in ChileNsoesie, Elaine O.; Mekaru, Sumiko R.; Ramakrishnan, Naren; Marathe, Madhav V.; Brownstein, John S. (PLOS, 2014-04-24)Background: Hantavirus pulmonary syndrome (HPS) is a life threatening disease transmitted by the rodent Oligoryzomys longicaudatus in Chile. Hantavirus outbreaks are typically small and geographically confined. Several studies have estimated risk based on spatial and temporal distribution of cases in relation to climate and environmental variables, but few have considered climatological modeling of HPS incidence for monitoring and forecasting purposes. Methodology: Monthly counts of confirmed HPS cases were obtained from the Chilean Ministry of Health for 2001–2012. There were an estimated 667 confirmed HPS cases. The data suggested a seasonal trend, which appeared to correlate with changes in climatological variables such as temperature, precipitation, and humidity. We considered several Auto Regressive Integrated Moving Average (ARIMA) time-series models and regression models with ARIMA errors with one or a combination of these climate variables as covariates. We adopted an information-theoretic approach to model ranking and selection. Data from 2001–2009 were used in fitting and data from January 2010 to December 2012 were used for one-stepahead predictions. Results: We focused on six models. In a baseline model, future HPS cases were forecasted from previous incidence; the other models included climate variables as covariates. The baseline model had a Corrected Akaike Information Criterion (AICc) of 444.98, and the top ranked model, which included precipitation, had an AICc of 437.62. Although the AICc of the top ranked model only provided a 1.65% improvement to the baseline AICc, the empirical support was 39 times stronger relative to the baseline model. Conclusions: Instead of choosing a single model, we present a set of candidate models that can be used in modeling and forecasting confirmed HPS cases in Chile. The models can be improved by using data at the regional level and easily extended to other countries with seasonal incidence of HPS.
- Monitoring Disease Trends using Hospital Traffic Data from High Resolution Satellite Imagery: A Feasibility StudyNsoesie, Elaine O.; Butler, Patrick; Ramakrishnan, Naren; Mekaru, Sumiko R.; Brownstein, John S. (Nature, 2015-03-13)Challenges with alternative data sources for disease surveillance include differentiating the signal from the noise, and obtaining information from data constrained settings. For the latter, events such as increases in hospital traffic could serve as early indicators of social disruption resulting from disease. In this study, we evaluate the feasibility of using hospital parking lot traffic data extracted from high-resolution satellite imagery to augment public health disease surveillance in Chile, Argentina and Mexico. We used archived satellite imagery collected from January 2010 to May 2013 and data on the incidence of respiratory virus illnesses from the Pan American Health Organization as a reference. We developed dynamical Elastic Net multivariable linear regression models to estimate the incidence of respiratory virus illnesses using hospital traffic and assessed how to minimize the effects of noise on the models. We noted that predictions based on models fitted using a sample of observations were better. The results were consistent across countries with selected models having reasonably low normalized root-mean-squared errors and high correlations for both the fits and predictions. The observations from this study suggest that if properly procured and combined with other information, this data source could be useful for monitoring disease trends.
- Monitoring Influenza Epidemics in China with Search Query from BaiduYuan, Qingyu; Nsoesie, Elaine O.; Lv, Benfu; Peng, Geng; Chunara, Rumi; Brownstein, John S. (PLOS, 2013-05-30)Several approaches have been proposed for near real-time detection and prediction of the spread of influenza. These include search query data for influenza-related terms, which has been explored as a tool for augmenting traditional surveillance methods. In this paper, we present a method that uses Internet search query data from Baidu to model and monitor influenza activity in China. The objectives of the study are to present a comprehensive technique for: (i) keyword selection, (ii) keyword filtering, (iii) index composition and (iv) modeling and detection of influenza activity in China. Sequential time-series for the selected composite keyword index is significantly correlated with Chinese influenza case data. In addition, one-month ahead prediction of influenza cases for the first eight months of 2012 has a mean absolute percent error less than 11%. To our knowledge, this is the first study on the use of search query data from Baidu in conjunction with this approach for estimation of influenza activity in China.
- Prediction of Disease and Phenotype Associations from Genome-Wide Association StudiesLewis, Stephanie N.; Nsoesie, Elaine O.; Weeks, Charles; Qiao, Dan; Zhang, Liqing (PLOS, 2011-11-04)Background Genome wide association studies (GWAS) have proven useful as a method for identifying genetic variations associated with diseases. In this study, we analyzed GWAS data for 61 diseases and phenotypes to elucidate common associations based on single nucleotide polymorphisms (SNP). The study was an expansion on a previous study on identifying disease associations via data from a single GWAS on seven diseases. Methodology/Principal Findings Adjustments to the originally reported study included expansion of the SNP dataset using Linkage Disequilibrium (LD) and refinement of the four levels of analysis to encompass SNP, SNP block, gene, and pathway level comparisons. A pair-wise comparison between diseases and phenotypes was performed at each level and the Jaccard similarity index was used to measure the degree of association between two diseases/phenotypes. Disease relatedness networks (DRNs) were used to visualize our results. We saw predominant relatedness between Multiple Sclerosis, type 1 diabetes, and rheumatoid arthritis for the first three levels of analysis. Expected relatedness was also seen between lipid- and blood-related traits. Conclusions/Significance The predominant associations between Multiple Sclerosis, type 1 diabetes, and rheumatoid arthritis can be validated by clinical studies. The diseases have been proposed to share a systemic inflammation phenotype that can result in progression of additional diseases in patients with one of these three diseases. We also noticed unexpected relationships between metabolic and neurological diseases at the pathway comparison level. The less significant relationships found between diseases require a more detailed literature review to determine validity of the predictions. The results from this study serve as a first step towards a better understanding of seemingly unrelated diseases and phenotypes with similar symptoms or modes of treatment.
- Sensitivity Analysis and Forecasting in Network Epidemiology ModelsNsoesie, Elaine O. (Virginia Tech, 2012-03-30)In recent years, several methods have been proposed for real-time modeling and forecasting of the epidemic curve. These methods range from simple compartmental models to complex agent-based models. In this dissertation, we present a model-based reasoning approach to forecasting the epidemic curve and estimating underlying disease model parameters. The method is based on building an epidemic library consisting of past and simulated influenza outbreaks. During an influenza epidemic, we use a combination of statistical, optimization and modeling techniques to either assign the epidemic to one of the cases in the library or propose parameters for modeling the epidemic. The method is presented in four steps. First, we discuss a sensitivity analysis study evaluating how minute changes in the disease model parameters influence the dynamics of simulated epidemics. Next, we present a supervised classification method for predicting the epidemic curve. The epidemic curve is forecasted by matching the partial surveillance curve to at least one of the epidemics in the library. We expand on the classification approach by presenting a method which identifies epidemics similar or different from those in the library. Lastly, we discuss a simulation optimization method for estimating model parameters to forecast the epidemic curve of an epidemic distinct from those in the library.
- Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza EpidemicsNsoesie, Elaine O.; Beckman, Richard J.; Marathe, Madhav V. (Public Library of Science, 2012-10-29)Individual-based epidemiology models are increasingly used in the study of influenza epidemics. Several studies on influenza dynamics and evaluation of intervention measures have used the same incubation and infectious period distribution parameters based on the natural history of influenza. A sensitivity analysis evaluating the influence of slight changes to these parameters (in addition to the transmissibility) would be useful for future studies and real-time modeling during an influenza pandemic. In this study, we examined individual and joint effects of parameters and ranked parameters based on their influence on the dynamics of simulated epidemics. We also compared the sensitivity of the model across synthetic social networks for Montgomery County in Virginia and New York City (and surrounding metropolitan regions) with demographic and rural-urban differences. In addition, we studied the effects of changing the mean infectious period on age-specific epidemics. The research was performed from a public health standpoint using three relevant measures: time to peak, peak infected proportion and total attack rate. We also used statistical methods in the design and analysis of the experiments. The results showed that: (i) minute changes in the transmissibility and mean infectious period significantly influenced the attack rate; (ii) the mean of the incubation period distribution appeared to be sufficient for determining its effects on the dynamics of epidemics; (iii) the infectious period distribution had the strongest influence on the structure of the epidemic curves; (iv) the sensitivity of the individual-based model was consistent across social networks investigated in this study and (v) age-specific epidemics were sensitive to changes in the mean infectious period irrespective of the susceptibility of the other age groups. These findings suggest that small changes in some of the disease model parameters can significantly influence the uncertainty observed in real-time forecasting and predicting of the characteristics of an epidemic.
- A Simulation Optimization Approach to Epidemic ForecastingNsoesie, Elaine O.; Beckman, Richard J.; Shashaani, Sara; Nagaraj, Kalyani S.; Marathe, Madhav V. (PLOS, 2013-06-27)Reliable forecasts of influenza can aid in the control of both seasonal and pandemic outbreaks. We introduce a simulation optimization (SIMOP) approach for forecasting the influenza epidemic curve. This study represents the final step of a project aimed at using a combination of simulation, classification, statistical and optimization techniques to forecast the epidemic curve and infer underlying model parameters during an influenza outbreak. The SIMOP procedure combines an individualbased model and the Nelder-Mead simplex optimization method. The method is used to forecast epidemics simulated over synthetic social networks representing Montgomery County in Virginia, Miami, Seattle and surrounding metropolitan regions. The results are presented for the first four weeks. Depending on the synthetic network, the peak time could be predicted within a 95% CI as early as seven weeks before the actual peak. The peak infected and total infected were also accurately forecasted for Montgomery County in Virginia within the forecasting period. Forecasting of the epidemic curve for both seasonal and pandemic influenza outbreaks is a complex problem, however this is a preliminary step and the results suggest that more can be achieved in this area.
- A systematic review of studies on forecasting the dynamics of influenza outbreaksNsoesie, Elaine O.; Brownstein, John S.; Ramakrishnan, Naren; Marathe, Madhav V. (Wiley, 2013-12-23)Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions.
- Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease OutbreaksGhosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren (Nature, 2017-01-19)In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.