Browsing by Author "Ohenhen, Leonard O."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Disappearing cities on US coastsOhenhen, Leonard O.; Shirzaei, Manoochehr; Ojha, Chandrakanta; Sherpa, Sonam F.; Nicholls, Robert J. (Nature Research, 2024-03-06)The sea level along the US coastlines is projected to rise by 0.25–0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities. However, these impacts may be exacerbated by coastal subsidence— the sinking of coastal land areas—a factor that is often underrepresented in coastal-management policies and long-term urban planning. In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km² is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000–273,000 people and 31,000–171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.
- Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motionOhenhen, Leonard O.; Shirzaei, Manoochehr; Ojha, Chandrakanta; Kirwan, Matthew L. (Nature Research, 2023-04-11)The vulnerability of coastal environments to sea-level rise varies spatially, particularly due to local land subsidence. However, high-resolution observations and models of coastal subsidence are scarce, hindering an accurate vulnerability assessment. We use satellite data from 2007 to 2020 to create high-resolution map of subsidence rate at mm-level accuracy for different land covers along the ~3,500 km long US Atlantic coast. Here, we show that subsidence rate exceeding 3mm per year affects most coastal areas, including wetlands, forests, agricultural areas, and developed regions. Coastal marshes represent the dominant land cover type along the US Atlantic coast and are particularly vulnerable to subsidence. We estimate that 58 to 100% of coastal marshes are losing elevation relative to sea level and show that previous studies substantially underestimate marsh vulnerability by not fully accounting for subsidence.
- Microbially Induced Anaerobic Oxidation of Magnetite to Maghemite in a Hydrocarbon-Contaminated AquiferOhenhen, Leonard O.; Feinberg, Joshua M.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Cozzarelli, Isabelle M.; Rios-Sanchez, Miriam; Isaacson, Carl W.; Stricker, Alexis; Atekwana, Estella A. (American Geophysical Union, 2022-04)Iron mineral transformations occurring in hydrocarbon-contaminated sites are linked to the biodegradation of the hydrocarbons. At a hydrocarbon-contaminated site near Bemidji, Minnesota, USA, measurements of magnetic susceptibility (MS) are useful for monitoring the natural attenuation of hydrocarbons related to iron cycling. However, a transient MS, previously observed at the site, remains poorly understood and the iron mineral phases acting as reactants and products associated with this MS perturbation remain largely unknown. To address these unknowns, we acquired mineral magnetism measurements, including hysteresis loops, backfield curves, and isothermal remanent magnetizations on sediment core samples retrieved from the site and magnetite-filled mineral packets installed within the aquifer. Our data show that the core samples and magnetite packs display decreasing magnetization with time and that this loss in magnetization is accompanied by increasing bulk coercivity consistent with decreased average grain size and/or partial oxidation. Low-temperature magnetometry on all samples displayed behavior consistent with magnetite, but samples within the plume also show evidence of maghemitization. This interpretation is supported by the occurrence of shrinkage cracks on the surface of the grains imaged via scanning electron microscopy. Magnetite transformation to maghemite typically occurs under oxic conditions, here, we propose that maghemitization occurs within the anoxic portions of the plume via microbially mediated anaerobic oxidation. Mineral dissolution also occurs within the plume. Microorganisms capable of such anaerobic oxidation have been identified within other areas at the Bemidji site, but additional microbiological studies are needed to link specific anaerobic iron oxidizers with this loss of magnetization.