Browsing by Author "Owen, Rachel K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Framework for using downscaled climate model projections in ecological experiments to quantify plant and soil responsesOwen, Rachel K.; Webb, Elisabeth B.; Goyne, Keith W.; Svoma, Bohumil M.; Gautam, Sagar (2019-09)Soil and plant responses to climate change can be quantified in controlled settings. However, the complexity of climate projections often leads researchers to evaluate ecosystem response based on general trends, rather than specific climate model outputs. Climate projections capture spatial and temporal climate extremes and variability that are lost when using mean climate trends. In addition, application of climate projections in experimental settings remains limited. Our objective was to develop a framework to incorporate statistically downscaled climate model projections into the design of temperature and precipitation treatments for ecological experiments. To demonstrate the utility of experimental treatments derived from climate projections, we used wetlands in the Great Plains as a model ecosystem for evaluating plant and soil responses. Spatial and temporal projections were selected to capture variability and intensity of projected future conditions for exemplary purposes. To illustrate climate projection application for ecological experiments, we developed temperature and precipitation treatments based on moderate-emissions scenario climate outputs (i.e., RCP4.5-650 ppm CO2 equivalent). Our temperature treatments captured weekly trends that represented cool, average, and warm temperature predictions, and our daily precipitation treatments mimicked various seasonal precipitation trends and extreme events projected for the late 21st century. Treatments were applied to two short-term controlled experiments evaluating (1) plant germination (temperature treatment applied in growth chamber) and (2) soil nitrogen cycling (precipitation treatment applied in greenhouse) responses to projected future conditions in the Great Plains. Our approach provides flexibility for selecting appropriate and precise climate model outputs to design experimental treatments. Using these techniques, ecologists can better incorporate variation in climate model projections for experimentally evaluating ecosystem responses to future climate conditions, reduce uncertainty in predictive ecological models, and apply predicted outcomes when making management and policy decisions.
- Projected climate and land use changes drive plant community composition in agricultural wetlandsOwen, Rachel K.; Webb, Elisabeth B.; Haukos, David A.; Goyne, Keith W. (2020-07)Playa wetlands in the Great Plains, USA support a wide variety of plant species not found elsewhere in this agriculturally-dominated region due to the ephemeral presence of standing water and hydric soils within playas. If longer dry periods occur due to climate change or if changes in surrounding land use alter sediment accumulation rates and water storage capacity in playas, plant communities could experience decreased diversity, with lasting effects on ecosystem services provided by playas in the Great Plains and at a continental-level in North America. We quantified potential changes in playa wetland plant community composition associated with predicted changes in precipitation and land use in the Great Plains through the end of the 21st century. We conducted two six-month greenhouse experiments mimicking field conditions using intact mesocosms collected from playas in Nebraska and Texas. In the precipitation experiment, treatments derived from historical precipitation observations and three future moderate emissions (CMIP5 RCP4.5) downscaled climate projections were applied to mesocosms. For the land use experiment, treatments were simulated by nitrogen (N) applications to soil ranging from 0 to 100 mg-N L-1 with each precipitation event under historical rainfall patterns, representing increasing and decreasing area in agricultural use in playa watersheds. Plant communities tended to shift toward more native species under projected future climate conditions, but as N runoff increased, native species richness decreased. Agricultural land-use surrounding playas may have a greater effect on wetland plant communities than future alterations to hydrology based on climate change in the Great Plains; thus, efforts to reduce nutrient runoff into playas would likely mitigate loss in ecosystem function in the coming decades.