Browsing by Author "Pandey, V."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Comparison of nu(mu)-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions: MicroBooNE CollaborationAdams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bhat, A.; Bhattacharya, K.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, Leslie; Caratelli, D.; Castillo Fernandez, R.; Cavanna, F.; Cerati, G.; Chen, H.; Chen, Y.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Diaz, A.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Evans, J. J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Golapinni, S.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Guzowski, P.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, Glenn A.; Hourlier, A.; Huang, E-C; James, C.; Jan de Vries, J.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Jwa, Y-J; Kaleko, D.; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Marcocci, S.; Mariani, Camillo; Marshall, J.; Martinez Caicedo, D. A.; Mastbaum, A.; Meddage, V.; Mettler, T.; Miceli, T.; Mills, G. B.; Mogan, A.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murphy, M.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Ross-Lonergan, M.; von Rohr, C. Rudolph; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wei, H.; Wickremasinghe, D. A.; Wierman, K.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C. (2019-03-18)We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of MeV, using an exposure corresponding to 5.0x1019 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity.
- Design and construction of the MicroBooNE Cosmic Ray Tagger systemAdams, C.; Collaboration, Microboone; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bhat, A.; Bhattacharya, K.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, Leslie; Caratelli, D.; Terrazas, I. Caro; Carr, Rachel E.; Castillo Fernandez, R.; Cavanna, F.; Cerati, G.; Chen, Y.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Diaz, A.; Duffy, K.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Evans, J. J.; Fadeeva, A. A.; Fitzpatrick, R. S.; Fleming, B. T.; Franco, D.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinniz, S.; Goodwin, O.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Guzowski, P.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Horton-Smith, Glenn A.; Hourlier, A.; Huang, E-C; James, C.; Jan de Vries, J.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Jwa, Y-J; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Marcocci, S.; Mariani, Camillo; Marshall, J.; Martin-Albo, J.; Martinez Caicedo, D. A.; Mastbaum, A.; Meddage, V.; Mettler, T.; Mills, G. B.; Mistry, K.; Mogan, A.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murphy, M.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Ross-Lonergan, M.; von Rohr, C. Rudolph; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sharankova, R.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thomson, M.; Thornton, R. T.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wei, H.; Wickremasinghe, D. A.; Wierman, K.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, Geralyn P.; Zennameh, J.; Zhang, C. (2019-04)The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking.
- Probing electron-argon scattering for liquid-argon based neutrino-oscillation programPandey, V.; Abrams, D.; Alsalmi, S.; Ankowski, Artur M.; Bane, J.; Benhar, Omar; Dai, H.; Day, D. B.; Higinbotham, D. W.; Mariani, Camillo; Murphy, M.; Nguyen, D. (2017-11-05)The electron scattering has been a vital tool to study the properties of the target nucleus for over five decades. Though, the particular interest on 40Ar nucleus stemmed from the progress in the accelerator-based neutrino-oscillation experiments. The complexity of nuclei comprising the detectors and their weak response turned out to be one of the major hurdles in the quest of achieving unprecedented precision in these experiments. The challenges are further magnified by the use of Liquid Argon Time Projection Chambers (LArTPCs) in the short- (SBN) and long-baseline (DUNE) neutrino program, with almost non-existence electron-argon scattering data and hence with no empirical basis to test and develop nuclear models for 40Ar. In light of these challenges, an electron-argon experiment, E12-14-012, was proposed at Jefferson Lab. The experiment has recently successfully completed collecting data for (e,e'p) and (e,e') processes, not just on 40Ar but also on 48Ti, and 12C targets. While the analysis is running with full steam, in this contribution, we present a brief overview of the experiment.