Browsing by Author "Pau, Massimiliano"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Shoulder kinematics during cyclic overhead work are affected by a passive arm support exoskeletonCasu, Giulia; Barajas-Smith, Isaiah; Barr, Alan; Phillips, Brandon; Kim, Sunwook; Nussbaum, Maury A.; Rempel, David; Pau, Massimiliano; Harris-Adamson, Carisa (Elsevier, 2024-07-25)Purpose: We investigated the influence of passive arm-support exoskeleton (ASE) with different levels of torque (50, 75, and 100%) on upper arm osteokinematics. Methods: Twenty participants completed a cyclic overhead drilling task with and without ASE. Task duration, joint angles, and angular acceleration peaks were analyzed during ascent and descent phases of the dominant upper arm. Results: Maximum ASE torque was associated with decreased peak acceleration during ascent (32.2%; SD 17.8; p < 0.001) and descent phases (38.8%; SD 17.8; p < 0.001). Task duration remained consistent. Increased torque led to a more flexed (7.2°; SD 5.5; p > 0.001) and internally rotated arm posture (17.6°; SD 12.1; p < 0.001), with minimal changes in arm abduction. Conclusion: The small arm accelerations and changes in osteokinematics we observed, support the use of this ASE, even while performing overhead cyclic tasks with the highest level of support.
- Trunk Flexion Monitoring among Warehouse Workers Using a Single Inertial Sensor and the Influence of Different Sampling DurationsPorta, Micaela; Pau, Massimiliano; Orrù, Pier Francesco; Nussbaum, Maury A. (MDPI, 2020-09-28)Trunk flexion represents a risk factor for the onset of low-back disorders, yet limited quantitative data exist regarding flexion exposures in actual working conditions. In this study, we evaluated the potential of using a single inertial measurement unit (IMU) to classify trunk flexion, in terms of amplitude, frequency, and duration, and assessed the influence of alternative time durations on exposure results. Twelve warehouse workers were monitored during two hours of an actual shift while wearing a single IMU on their low back. Trunk flexion data were reduced using exposure variation analysis integrated with recommended exposure thresholds. Workers spent 5.1% of their working time with trunk flexion of 30–60° and 2.3% with flexion of 60–90°. Depending on the level of acceptable error, relatively shorter monitoring periods (up to 50 min) might be sufficient to characterize trunk flexion exposures. Future work is needed, however, to determine if these results generalize to other postural exposures and tasks.