Browsing by Author "Peccoud, Jean"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- Adaptive Imaging Cytometry to Estimate Parameters of Gene Networks Models in Systems and Synthetic BiologyBall, David A.; Lux, Matthew W.; Adames, Neil R.; Peccoud, Jean (PLOS, 2014-09-11)The use of microfluidics in live cell imaging allows the acquisition of dense time-series from individual cells that can be perturbed through computer-controlled changes of growth medium. Systems and synthetic biologists frequently perform gene expression studies that require changes in growth conditions to characterize the stability of switches, the transfer function of a genetic device, or the oscillations of gene networks. It is rarely possible to know a priori at what times the various changes should be made, and the success of the experiment is unknown until all of the image processing is completed well after the completion of the experiment. This results in wasted time and resources, due to the need to repeat the experiment to fine-tune the imaging parameters. To overcome this limitation, we have developed an adaptive imaging platform called GenoSIGHT that processes images as they are recorded, and uses the resulting data to make real-time adjustments to experimental conditions. We have validated this closed-loop control of the experiment using galactose-inducible expression of the yellow fluorescent protein Venus in Saccharomyces cerevisiae. We show that adaptive imaging improves the reproducibility of gene expression data resulting in more accurate estimates of gene network parameters while increasing productivity ten-fold.
- Cyberbiosecurity: An Emerging New Discipline to Help Safeguard the BioeconomyMurch, Randall Steven; So, William K.; Buchholz, Wallace G.; Raman, Sanjay; Peccoud, Jean (2018-04-05)Cyberbiosecurity is being proposed as a formal new enterprise which encompasses cybersecurity, cyber-physical security and biosecurity as applied to biological and biomedical-based systems. In recent years, an array of important meetings and public discussions, commentaries and publications have occurred that highlight numerous vulnerabilities. While necessary first steps, they do not provide a systematized structure for effectively promoting communication, education and training, elucidation and prioritization for analysis, research, development, test and evaluation and implementation of scientific, technological, standards of practice, policy, or even regulatory or legal considerations for protecting the bioeconomy. Further, experts in biosecurity and cybersecurity are generally not aware of each other's domains, expertise, perspectives, priorities, or where mutually supported opportunities exist for which positive outcomes could result. Creating, promoting and advancing a new discipline can assist with formal, beneficial and continuing engagements. Recent key activities and publications that inform the creation of Cyberbiosecurity are briefly reviewed, as is the expansion of Cyberbiosecurity to include biomanufacturmg which is supported by a rigorous analysis of a biomanufacturmg facility. Recommendations are provided to initialize Cyberbiosecurity and place it on a trajectory to establish a structured and sustainable discipline, forum and enterprise.
- Estimation of gene network parameters from imaging cytometry dataLux, Matthew W. (Virginia Tech, 2013-05-23)Synthetic biology endeavors to forward engineer genetic circuits with novel function. A major inspiration for the field has been the enormous success in the engineering of digital electronic circuits over the past half century. This dissertation approaches synthetic biology from the perspective of the engineering design cycle, a concept ubiquitous across many engineering disciplines. First, an analysis of the state of the engineering design cycle in synthetic biology is presented, pointing out the most limiting challenges currently facing the field. Second, a principle commonly used in electronics to weigh the tradeoffs between hardware and software implementations of a function, called co-design, is applied to synthetic biology. Designs to implement a specific logical function in three distinct domains are proposed and their pros and cons weighed. Third, automatic transitioning between an abstract design, its physical implementation, and accurate models of the corresponding system are critical for success in synthetic biology. We present a framework for accomplishing this task and demonstrate how it can be used to explore a design space. A major limitation of the aforementioned approach is that adequate parameter values for the performance of genetic components do not yet exist. Thus far, it has not been possible to uniquely attribute the function of a device to the function of the individual components in a way that enables accurate prediction of the function of new devices assembled from the same components. This lack presents a major challenge to rapid progression through the design cycle. We address this challenge by first collecting high time-resolution fluorescence trajectories of individual cells expressing a fluorescent protein, as well as snapshots of the number of corresponding mRNA molecules per cell. We then leverage the information embedded in the cell-cell variability of the population to extract parameter values for a stochastic model of gene expression more complex than typically used. Such analysis opens the door for models of genetic components that can more reliably predict the function of new combinations of these basic components.
- Experimental testing of a new integrated model of the budding yeast Start transitionAdames, Neil R.; Schuck, P. Logan; Chen, Katherine C.; Murali, T. M.; Tyson, John J.; Peccoud, Jean (American Society for Cell Biology, 2015-11-05)The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1–S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1–S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model’s simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network.
- Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutantsGallegos, Jenna E.; Adames, Neil R.; Rogers, Mark F.; Kraikivski, Pavel; Ibele, Aubrey; Nurzynski-Loth, Kevin; Kudlow, Eric; Murali, T. M.; Tyson, John J.; Peccoud, Jean (2020-05-06)Over the last 30 years, computational biologists have developed increasingly realistic mathematical models of the regulatory networks controlling the division of eukaryotic cells. These models capture data resulting from two complementary experimental approaches: low-throughput experiments aimed at extensively characterizing the functions of small numbers of genes, and large-scale genetic interaction screens that provide a systems-level perspective on the cell division process. The former is insufficient to capture the interconnectivity of the genetic control network, while the latter is fraught with irreproducibility issues. Here, we describe a hybrid approach in which the 630 genetic interactions between 36 cell-cycle genes are quantitatively estimated by high-throughput phenotyping with an unprecedented number of biological replicates. Using this approach, we identify a subset of high-confidence genetic interactions, which we use to refine a previously published mathematical model of the cell cycle. We also present a quantitative dataset of the growth rate of these mutants under six different media conditions in order to inform future cell cycle models.
- GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructsCai, Yizhi; Wilson, Mandy L.; Peccoud, Jean (2010-05)One of the foundations of synthetic biology is the project to develop libraries of standardized genetic parts that could be assembled quickly and cheaply into large systems. The limitations of the initial BioBrick standard have prompted the development of multiple new standards proposing different avenues to overcome these shortcomings. The lack of compatibility between standards, the compliance of parts with only some of the standards or even the type of constructs that each standard supports have significantly increased the complexity of assembling constructs from standardized parts. Here, we describe computer tools to facilitate the rigorous description of part compositions in the context of a rapidly changing landscape of physical construction methods and standards. A context-free grammar has been developed to model the structure of constructs compliant with six popular assembly standards. Its implementation in GenoCAD makes it possible for users to quickly assemble from a rich library of genetic parts, constructs compliant with any of six existing standards.
- GenoCAD: linguistic approaches to synthetic biologyCai, Yizhi (Virginia Tech, 2010-04-20)Synthetic biology is an emerging interdisciplinary research field, which leverages the maturation of DNA synthesis technologies. By introducing engineering principles to synthetic biological systems design, synthetic biology shows great potential to shed new lights on biology and benefit human beings. Computer assisted design (CAD) tools will play an important role in the rational design of synthetic genetic systems. This dissertation presents the first CAD tool for synthetic biology — GenoCAD, a linguistic-based web application. By viewing DNA sequences as a language, we developed the first syntactic model to design and verify synthetic genetic constructs. Then we conducted a careful curation of the terminal set in the grammar - the first comprehensive analysis of the Registry of standard biological parts. The implementation and major features of GenoCAD are discussed, and in particular we showed how to develop a domain-specific grammar for BioBrick-based construct design and make GenoCAD a useful tool for the iGEM students. Finally, we went beyond the syntactic level to explore the semantics of synthetic DNA sequences: by associating attributes with biological parts and coupling semantic actions with grammar rules, we developed the first semantic models to relate the genotype to the phenotype of synthetic genetic constructs. The theories and techniques presented in this dissertation, along with the informative results presented, will serve as a foundation for the future developments of GenoCAD.
- GenoLIB: a database of biological parts derived from a library of common plasmid featuresAdames, Neil R.; Wilson, Mandy L.; Fang, Gang; Lux, Matthew W.; Glick, Benjamin S.; Peccoud, Jean (2015-05-26)Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of similar to 2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects.
- Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory NetworksAhmadian, Mansooreh (Virginia Tech, 2020-08-04)A complex network of genes and proteins governs the robust progression through cell cycles in the presence of inevitable noise. Stochastic modeling is viewed as a key paradigm to study the effects of intrinsic and extrinsic noise on the dynamics of biochemical networks. A detailed quantitative description of such complex and multiscale networks via stochastic modeling poses several challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the quality of the parameter estimation based on experimental observations. The goal of this dissertation is to address these problems by developing new efficient methods for modeling and simulation of stochastic effects in biochemical systems. Particularly, a hybrid stochastic model is developed to represent a detailed molecular mechanism of cell cycle control in budding yeast cells. In a single multiscale model, the proposed hybrid approach combines the advantages of two regimes: 1) the computational efficiency of a deterministic approach, and 2) the accuracy of stochastic simulations. The results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements. Furthermore, a new hierarchical deep classification (HDC) algorithm is developed to address the parameter estimation problem in a monomolecular system. The HDC algorithm adopts a neural network that, via multiple hierarchical search steps, finds reasonably accurate ranges for the model parameters. To train the neural network in the presence of experimental data scarcity, the proposed method leverages the domain knowledge from stochastic simulations to generate labeled training data. The results show that the proposed HDC algorithm yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
- A hybrid stochastic model of the budding yeast cell cycleAhmadian, Mansooreh; Tyson, John J.; Peccoud, Jean; Cao, Yang (2020-03-27)The growth and division of eukaryotic cells are regulated by complex, multi-scale networks. In this process, the mechanism of controlling cell-cycle progression has to be robust against inherent noise in the system. In this paper, a hybrid stochastic model is developed to study the effects of noise on the control mechanism of the budding yeast cell cycle. The modeling approach leverages, in a single multi-scale model, the advantages of two regimes: (1) the computational efficiency of a deterministic approach, and (2) the accuracy of stochastic simulations. Our results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements.
- Mapping Genotype to Phenotype using Attribute GrammarAdam, Laura (Virginia Tech, 2013-09-20)Over the past 10 years, several synthetic biology research groups have proposed tools and domain-specific languages to help with the design of artificial DNA molecules. Community standards for exchanging data between these tools, such as the Synthetic Biology Open Language (SBOL), have been developed. It is increasingly important to be able to perform in silico simulation before the time and cost consuming wet lab realization of the constructs, which, as technology advances, also become in themselves more complex. By extending the concept of describing genetic expression as a language, we propose to model relations between genotype and phenotype using formal language theory. We use attribute grammars (AGs) to extract context-dependent information from genetic constructs and compile them into mathematical models, possibly giving clues about their phenotypes. They may be used as a backbone for biological Domain-Specific Languages (DSLs) and we developed a methodology to design these AG based DSLs. We gave examples of languages in the field of synthetic biology to model genetic regulatory networks with Ordinary Differential Equations (ODEs) based on various rate laws or with discrete boolean network models. We implemented a demonstration of these concepts in GenoCAD, a Computer Assisted Design (CAD) software for synthetic biology. GenoCAD guides users from design to simulation. Users can either design constructs with the attribute grammars provided or define their own project-specific languages. Outputting the mathematical model of a genetic construct is performed by DNA compilation based on the attribute grammar specified; the design of new languages by users necessitated the generation on-the-fly of such attribute grammar based DNA compilers. We also considered the impact of our research and its potential dual-use issues. Indeed, after the design exploration is performed in silico, the next logical step is to synthesize the designed construct's DNA molecule to build the construct in vivo. We implemented an algorithm to identify sequences of concern of any length that are specific to Select Agents and Toxins, helping to ensure safer use of our methods.
- Measurement and modeling of transcriptional noise in the cell cycle regulatory networkBall, David A.; Adames, Neil R.; Reischmann, Nadine; Barik, Debashis; Franck, Christopher T.; Tyson, John J.; Peccoud, Jean (Landes Bioscience, 2013-10-01)Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.
- Modeling structure-function relationships in synthetic DNA sequences using attribute grammarsCai, Yizhi; Lux, Matthew W.; Adam, Laura; Peccoud, Jean (Public Library of Science, 2012-04-12)Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology.
- Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging CytometryBall, David A.; Marchand, Julie; Poulet, Magaly; Baumann, William T.; Chen, Katherine C.; Tyson, John J.; Peccoud, Jean (PLOS, 2011-10-26)Progression through the cell division cycle is orchestrated by a complex network of interacting genes and proteins. Some of these proteins are known to fluctuate periodically during the cell cycle, but a systematic study of the fluctuations of a broad sample of cell-cycle proteins has not been made until now. Using time-lapse fluorescence microscopy, we profiled 16 strains of budding yeast, each containing GFP fused to a single gene involved in cell cycle regulation. The dynamics of protein abundance and localization were characterized by extracting the amplitude, period, and other indicators from a series of images. Oscillations of protein abundance could clearly be identified for Cdc15, Clb2, Cln1, Cln2, Mcm1, Net1, Sic1, and Whi5. The period of oscillation of the fluorescently tagged proteins is generally in good agreement with the inter-bud time. The very strong oscillations of Net1 and Mcm1 expression are remarkable since little is known about the temporal expression of these genes. By collecting data from large samples of single cells, we quantified some aspects of cell-to-cell variability due presumably to intrinsic and extrinsic noise affecting the cell cycle.
- The PLOS ONE Synthetic Biology Collection: Six Years and CountingPeccoud, Jean; Isalan, Mark (Public Library of Science, 2012-08-15)Since it was launched in 2006, PLOS ONE has published over fifty articles illustrating the many facets of the emerging field of synthetic biology. This article reviews these publications by organizing them into broad categories focused on DNA synthesis and assembly techniques, the development of libraries of biological parts, the use of synthetic biology in protein engineering applications, and the engineering of gene regulatory networks and metabolic pathways. Finally, we review articles that describe enabling technologies such as software and modeling, along with new instrumentation. In order to increase the visibility of this body of work, the papers have been assembled into the PLOS ONE Synthetic Biology Collection (www.ploscollections.org/synbio). Many of the innovative features of the PLOS ONE web site will help make this collection a resource that will support a lively dialogue between readers and authors of PLOS ONE synthetic biology papers. The content of the collection will be updated periodically by including relevant articles as they are published by the journal. Thus, we hope that this collection will continue to meet the publishing needs of the synthetic biology community.
- Rule-Based Design of Plant Expression Vectors Using GenoCADColl, Anna; Wilson, Mandy L.; Gruden, Kristina; Peccoud, Jean (PLOS, 2015-07-06)Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.
- Sequence verification of synthetic DNA by assembly of sequencing readsWilson, Mandy L.; Cai, Yizhi; Hanlon, Regina; Taylor, Samantha; Chevreux, Bastien; Setubal, Joao C.; Tyler, Brett M.; Peccoud, Jean (2013-01)Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org.
- A stochastic model for error correction of kinetochore-microtubule attachments in budding yeastBanerjee, Anand; Adames, Neil R.; Peccoud, Jean; Tyson, John J. (2020-08-06)To divide replicated chromosomes equally between daughter cells, kinetochores must attach to microtubules emanating from opposite poles of the mitotic spindle (biorientation). An error correction mechanism facilitates this process by destabilizing erroneous kinetochore-microtubule attachments. Here we present a stochastic model of kinetochore-microtubule attachments, via an essential protein Ndc80 in budding yeast,Saccharomyces cerevisiae. Using the model, we calculate the stochastic dynamics of a pair of sister kinetochores as they transition among different attachment states. First of all, we determine the kinase-to-phosphatase balance point that maximizes the probability of biorientation, while starting from an erroneous attachment state. We find that the balance point is sensitive to the rates of microtubule-Ndc80 dissociation and derive an approximate analytical formula that defines the balance point. Secondly, we determine the probability of transition from low-tension amphitelic to monotelic attachment and find that, despite this probability being approximately 33%, biorientation can be achieved with high probability. Thirdly, we calculate the contribution of the geometrical orientation of sister kinetochores to the probability of biorientation and show that, in the absence of geometrical orientation, the biorientation error rate is much larger than that observed in experiments. Finally, we study the coupling of the error correction mechanism to the spindle assembly checkpoint by calculating the average binding of checkpoint-related proteins to the kinetochore during the error correction process.
- A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular VariabilityBarik, Debashis; Ball, David A.; Peccoud, Jean; Tyson, John J. (PLOS, 2016-12)The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of similar to 30 mutant yeast strains that have not yet been characterized experimentally.
- A syntactic model to design and verify synthetic genetic constructs derived from standard biological partsCai, Y.; Hartnett, B.; Gustafsson, C.; Peccoud, Jean (2007)Motivation: The sequence of artificial genetic constructs is composed of multiple functional fragments, or genetic parts, involved in different molecular steps of gene expression mechanisms. Biologists have deciphered structural rules that the design of genetic constructs needs to follow in order to ensure a successful completion of the gene expression process, but these rules have not been formalized, making it challenging for non-specialists to benefit from the recent progress in gene synthesis. Results: We show that context-free grammars (CFG) can formalize these design principles. This approach provides a path to organizing libraries of genetic parts according to their biological functions, which correspond to the syntactic categories of the CFG. It also provides a framework for the systematic design of new genetic constructs consistent with the design principles expressed in the CFG. Using parsing algorithms, this syntactic model enables the verification of existing constructs. We illustrate these possibilities by describing a CFG that generates the most common architectures of genetic constructs in Escherichia coli. Availability: A web site allows readers to experiment with the algorithms presented in this article: www.genocad.org