Browsing by Author "Pratelli, Rejane"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plantZhao, Chengsong; Pratelli, Rejane; Yu, Shi; Shelley, Brett; Collakova, Eva; Pilot, Guillaume (Oxford University Press, 2021-09-30)Amino acid transporters play a critical role in distributing amino acids within the cell compartments and between plant organs. Despite this importance, relatively few amino acid transporter genes have been characterized and their role elucidated with certainty. Two main families of proteins encode amino acid transporters in plants: the amino acid-polyamine-organocation superfamily, containing mostly importers, and the UMAMIT (usually multiple acids move in and out transporter) family, apparently encoding exporters, totaling 63 and 44 genes in Arabidopsis, respectively. Knowledge of UMAMITs is scarce, based on six Arabidopsis genes and a handful of genes from other species. To gain insight into the role of the members of this family and provide data to be used for future characterization, we studied the evolution of the UMAMITs in plants, and determined the functional properties, the structure, and localization of the 47 Arabidopsis UMAMITs. Our analysis showed that the AtUMAMITs are essentially localized at the tonoplast or the plasma membrane, and that most of them are able to export amino acids from the cytosol, confirming a role in intra- and intercellular amino acid transport. As an example, this set of data was used to hypothesize the role of a few AtUMAMITs in the plant and the cell.
- Suppressor mutations in the Glutamine Dumper1 protein dissociate disturbance in amino acid transport from other characteristics of the Gdu1D phenotypeYu, Shi; Pratelli, Rejane; Denbow, Cynthia J.; Pilot, Guillaume (Frontiers, 2015-08-04)Intracellular amino acid transport across plant membranes is critical for metabolic pathways which are often split between different organelles. In addition, transport of amino acids across the plasma membrane enables the distribution of organic nitrogen through the saps between leaves and developing organs. Amino acid importers have been studied for more than two decades, and their role in this process is well-documented. While equally important, amino acid exporters are not well-characterized. The over-expression of GDU1, encoding a small membrane protein with one transmembrane domain, leads to enhancement of amino acid export by Arabidopsis cells, glutamine secretion at the leaf margin, early senescence and size reduction of the plant, possibly caused by the stimulation of amino acid exporter(s). Previous work reported the identification of suppressor mutations of the GDU1 over-expression phenotype, which affected the GDU1 and LOG2 genes, the latter encoding a membrane-bound ubiquitin ligase interacting with GDU1. The present study focuses on the characterization of three additional suppressor mutations affecting GDU1. Size, phenotype, glutamine transport and amino acid tolerance were recorded for recapitulation plants and over-expressors of mutagenized GDU1 proteins. Unexpectedly, the over-expression of most mutated GDU1 led to plants with enhanced amino acid export, but failing to display secretion of glutamine and size reduction. The results show that the various effects triggered by GDU1 over-expression can be dissociated from one another by mutagenizing specific residues. The fact that these residues are not necessarily conserved suggests that the diverse biochemical properties of the GDU1 protein are not only born by the characterized transmembrane and VIMAG domains. These data provide a better understanding of the structure/function relationships of GDU1 and may enable modifying amino acid export in plants without detrimental effects on plant fitness.