Browsing by Author "Pu, Jiameng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Deepfake Videos in the Wild: Analysis and DetectionPu, Jiameng; Mangaokar, Neal; Kelly, Lauren; Bhattacharya, Parantapa; Sundaram, Kavya; Javed, Mobin; Wang, Bolun; Viswanath, Bimal (ACM, 2021-04)AI-manipulated videos, commonly known as deepfakes, are an emerging problem. Recently, researchers in academia and industry have contributed several (self-created) benchmark deepfake datasets, and deepfake detection algorithms. However, little effort has gone towards understanding deepfake videos in the wild, leading to a limited understanding of the real-world applicability of research contributions in this space. Even if detection schemes are shown to perform well on existing datasets, it is unclear how well the methods generalize to real-world deepfakes. To bridge this gap in knowledge, we make the following contributions: First, we collect and present the largest dataset of deepfake videos in the wild, containing 1,869 videos from YouTube and Bilibili, and extract over 4.8M frames of content. Second, we present a comprehensive analysis of the growth patterns, popularity, creators, manipulation strategies, and production methods of deepfake content in the realworld. Third, we systematically evaluate existing defenses using our new dataset, and observe that they are not ready for deployment in the real-world. Fourth, we explore the potential for transfer learning schemes and competition-winning techniques to improve defenses.
- Defending Against Misuse of Synthetic Media: Characterizing Real-world Challenges and Building Robust DefensesPu, Jiameng (Virginia Tech, 2022-10-07)Recent advances in deep generative models have enabled the generation of realistic synthetic media or deepfakes, including synthetic images, videos, and text. However, synthetic media can be misused for malicious purposes and damage users' trust in online content. This dissertation aims to address several key challenges in defending against the misuse of synthetic media. Key contributions of this dissertation include the following: (1) Understanding challenges with the real-world applicability of existing synthetic media defenses. We curate synthetic videos and text from the wild, i.e., the Internet community, and assess the effectiveness of state-of-the-art defenses on synthetic content in the wild. In addition, we propose practical low-cost adversarial attacks, and systematically measure the adversarial robustness of existing defenses. Our findings reveal that most defenses show significant degradation in performance under real-world detection scenarios, which leads to the second thread of my work: (2) Building detection schemes with improved generalization performance and robustness for synthetic content. Most existing synthetic image detection schemes are highly content-specific, e.g., designed for only human faces, thus limiting their applicability. I propose an unsupervised content-agnostic detection scheme called NoiseScope, which does not require a priori access to synthetic images and is applicable to a wide variety of generative models, i.e., GANs. NoiseScope is also resilient against a range of countermeasures conducted by a knowledgeable attacker. For the text modality, our study reveals that state-of-the-art defenses that mine sequential patterns in the text using Transformer models are vulnerable to simple evasion schemes. We conduct further exploration towards enhancing the robustness of synthetic text detection by leveraging semantic features.