Browsing by Author "Renneckar, Scott H."
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Advancing characterization techniques for structure-property determination of in-situ lignocellulosesChowdhury, Sudip (Virginia Tech, 2011-07-21)The global progression towards sustainable energy, materials and chemicals requires novel and improved analytical tools to understand and optimize lignocellulosic biomass utilization. In an effort to advance lignocellulose characterization, gain insights into biomass processing, and obtain novel perspectives on cell wall ultrastructure, this study utilizes three principal polymer characterization techniques, namely compressive-torsion dynamic mechanical analysis (DMA), deuterium quadrupolar nuclear magnetic resonance (2H NMR) and rheo-infrared spectroscopy. A novel parallel-plate compressive-torsion DMA protocol is developed to analyze very small solvent-plasticized biomass specimens with or without mechanical integrity. The benefits and limitations of this technique are demonstrated by comparing it to a conventional tensile-torsion DMA while analyzing various solvent-plasticized lignocelluloses. The rheology of wood in various organic solvents is studied through dynamic thermal scans, Time/temperature superposition (TTS) and fragility analysis. Plasticizing solvents and wood grain orientation significantly affected the lignin glass-transition temperature. Dynamic TTS reveals that while all storage modulus data shift smoothly, the thermorheological complexity of solvent-plasticized wood becomes evident in loss component master curves. It is argued that the plasticized lignocellulose TTS is insightful and potentially useful, although it fails to satisfy the classic TTS validity criteria. Subsequently, it is justified that the fragility analysis is a better suited treatment than the WLF model to investigate cooperative segmental motions of plasticized wood. Deuterium quadrupolar NMR reveals a new perspective on the orientation of amorphous wood polymers and two distinct amorphous polymer domains: a highly oriented phase in the S2 layer of the secondary cell wall and an isotropic phase postulated to occur in the compound middle lamella (CML). If the origin of the isotropic phase is confirmed to arise from the CML, then this technique provides a way to independently investigate the morphology and phase dynamics of CML and S2 in an intact tissue, and should bring novel insights into deconstructive strategies specific to the oriented and unoriented domains. Finally the effects of a wood-adhesion promoter (hydroxymethyl resorcinol, HMR) on in-situ wood polymers are studied to elucidate the still unresolved HMR-lignocellulose interactions. DMA, creep-TTS and 2H NMR reveal that HMR increases the crosslink density and restricts the mobility of wood amorphous phase. Rheo-IR spectroscopy shows that the molecular stress-transfer mechanism is altered within the wood cell wall.
- Bio-based composites that mimic the plant cell wallLi, Zhuo (Virginia Tech, 2009-04-22)Nature creates high performance materials under modest conditions, i.e., neutral pH and ambient temperature and pressure. One of the most significant materials is the plant cell wall. The plant cell wall is a composite of oriented cellulose microfibrils reinforcing a lignin/hemicellulose matrix. In principle, the plant cell wall composite is designed much like a synthetic fiber-reinforced polymer composite. Unlike synthetic composites, the plant cell wall has an excellent combination of high modulus, strength, toughness and low density that originates in the optimal interactions between the biopolymers. Therefore, to produce high performance composites, a unique route may be to mimic a biological system like the plant cell wall. The present work focuses on understanding the thermodynamics of biopolymer assembly to exploit the process in vitro. In our system, we use an already polymerized nanocellulose template and polymerize phenolic monomers on the template using a peroxidase enzyme. In the first part, we have polymerized phenol using horseradish peroxidase (HRP) in the presence of TEMPO-oxidized nanocellulose. Similar to native plant cell wall structures, the polyphenol-nanocellulose composite had intimate mixing of polyphenol and cellulose at the nanoscale with the presence of cellulose promoting a uniquely organized structure. The obtained composite material showed synergy that enhanced the thermal stability, hydrophobicity, and possibly mechanical properties. In the second part, monolignol coniferyl alcohol was polymerized in the presence of nanocellulose by the same procedure. A comparison between the polyphenol composite and poly(coniferyl alcohol) (PCA) composite revealed that the propanyl substitution imparted flexibility to the PCA molecules so that they could bend and form a hollow globule structure to envelope nanocellulose inside. Polyphenol could not do this because of its rigidity.
- Bioactive Cellulose Nanocrystal Reinforced 3D Printable Poly(epsilon-caprolactone) Nanocomposite for Bone Tissue EngineeringHong, Jung Ki (Virginia Tech, 2015-05-07)Polymeric bone scaffolds are a promising tissue engineering approach for the repair of critical-size bone defects. Porous three-dimensional (3D) scaffolds play an essential role as templates to guide new tissue formation. However, there are critical challenges arising from the poor mechanical properties and low bioactivity of bioresorbable polymers, such as poly(epsilon-caprolactone) (PCL) in bone tissue engineering applications. This research investigates the potential use of cellulose nanocrystals (CNCs) as multi-functional additives that enhance the mechanical properties and increase the biomineralization rate of PCL. To this end, an in vitro biomineralization study of both sulfuric acid hydrolyzed-CNCs (SH-CNCs) and surface oxidized-CNCs (SO-CNCs) has been performed in simulated body fluid in order to evaluate the bioactivity of the surface functional groups, sulfate and carboxyl groups, respectively. PCL nanocomposites were prepared with different SO-CNC contents and the chemical/physical properties of the nanocomposites were analyzed. 3D porous scaffolds with fully interconnected pores and well-controlled pore sizes were fabricated from the PCL nanocomposites with a 3D printer. The mechanical stability of the scaffolds were studied using creep test under dry and submersion conditions. Lastly, the biocompatibility of CNCs and 3D printed porous scaffolds were assessed in vitro. The carboxyl groups on the surface of SO-CNCs provided a significantly improved calcium ion binding ability which could play an important role in the biomineralization (bioactivity) by induction of mineral formation for bone tissue engineering applications. In addition, the mechanical properties of porous PCL nanocomposite scaffolds were pronouncedly reinforced by incorporation of SO-CNCs. Both the compressive modulus and creep resistance of the PCL scaffolds were enhanced either in dry or in submersion conditions at 37 degrees Celsius. Lastly, the biocompatibility study demonstrated that both the CNCs and material fabrication processes (e.g., PCL nanocomposites and 3D printing) were not toxic to the preosteoblasts (MC3T3 cells). Also, the SO-CNCs showed a positive effect on biomineralization of PCL scaffolds (i.e., accelerated calcium or mineral deposits on the surface of the scaffolds) during in vitro study. Overall, the SO-CNCs could play a critical role in the development of scaffold materials as a potential candidate for reinforcing nanofillers in bone tissue engineering applications.
- Cellulose Nanocrystals: Size Characterization and Controlled Deposition by Inkjet PrintingNavarro, Fernando (Virginia Tech, 2010-06-29)Inkjet printing has generated considerable interest as a technique for the patterning of functional materials in the liquid phase onto a substrate. Despite its high promise, the phenomena associated with inkjet printing remain incompletely understood. This research project investigates inkjet printing of cellulose nanocrystals (CNCs) as a possible method for the fabrication of cellulose micropatterns. CNCs were prepared from wood pulp by H₂SO₄ hydrolysis and characterized in terms of length, width, and thickness distributions by atomic force microscopy (AFM) and dynamic light scattering. Aqueous CNC suspensions were characterized in terms of shear viscosity with a rheometer. Glass substrates were cleaned with a detergent solution, aqua regia, or a solvent mixture, and characterized in terms of surface chemical composition, surface free energy, polarity, roughness, ζ-potential, and surface charge distribution in air by X-ray photoelectron spectroscopy, contact angle measurements, AFM, streaming potential, and scanning Kelvin probe microscopy (SKPM). Additionally, poly(ethylene glycol)-grafted glass substrates were prepared and characterized in terms of surface free energy, polarity, and roughness. Aqueous CNC suspensions were printed in different patterns onto the different glass substrates with a commercial, piezoelectric drop-on-demand inkjet printer. Inkjet deposited droplet residues and micropatterns were analyzed by AFM, scanning electron microscopy, and polarized-light microscopy. At low CNC concentrations (0.05 wt %), inkjet-deposited droplets formed ring-like residues due to the "coffee drop effect". The "coffee drop effect" could be suppressed by the use of higher CNC concentrations. The resulting dot-like droplet residues exhibited Maltese cross interference patterns between crossed polarizers, indicating a radial orientation of the birefringent, elongated CNCs in these residues. The observed Maltese cross interference patterns represent unprecedented indirect evidence for a center-to-edge radial flow in drying droplets. The degree of definition of the micropatterns depended strongly on the surface properties of the glass substrates. Well-defined micropatterns were obtained on aqua regia-cleaned substrates. In addition to the surface free energy and polarity, other factors seemed to play a role in the formation of the inkjet-printed micropatterns. If these factors can be identified and controlled, inkjet deposition of CNCs could become an attractive method for the fabrication of cellulose micropatterns.
- Chitosan-Cellulose Nanocrystal Polyelectrolyte Complex Particles: Preparation, Characterization, and In Vitro Drug Release PropertiesWang, Hezhong (Virginia Tech, 2009-10-22)Polyelectrolyte complexes (PECs) between chitosan, a mucoadhesive, intestinal mucosal permeability-enhancing polysaccharide, and cellulose nanocrystals, rod-like cellulose nanoparticles with sulfate groups on their surface, have potential applications in oral drug delivery. The purpose of this research was to develop an understanding of the formation and properties of chitosan–cellulose nanocrystal PECs and determine their in vitro drug release properties, using caffeine and ibuprofen as model drugs. Cellulose nanocrystals were prepared by sulfuric acid hydrolysis of bleached wood pulp. Chitosans with three different molecular weights (81, 3·103, 6·103 kDa) and four different degrees of deacetylation (77, 80, 85, 89%) were used. PEC formation was studied by turbidimetric titration. PEC particles were characterized by FT-IR spectroscopy, scanning electron microscopy, dynamic light scattering, and laser Doppler electrophoresis. The formation and properties of chitosan–cellulose nanocrystal PEC particles were governed by the strong mismatch in the densities of the ionizable groups. The particles were composed primarily of cellulose nanocrystals. Particle shape and size strongly depended on the mixing ratio and pH of the surrounding medium. The ionic strength of the surrounding medium, and the molecular weight and degree of deacetylation of chitosan had a minor effect. Release of caffeine from the chitosan–cellulose nanocrystal PEC particles was rapid and uncontrolled. Ibuprofen-loaded PEC particles showed no release in simulated gastric fluid and rapid release in simulated intestinal fluid. Further evaluation studies should focus on the expected mucoadhesive and permeability-enhancing properties of chitosan–cellulose nanocrystal PEC particles.
- Effect of Cellulose Nanocrystals on the Rheology, Curing Behavior, and Fracture Performance of Phenol-Formaldehyde Resol ResinHong, Jung Ki (Virginia Tech, 2009-11-17)The purpose of this research was to determine the effects of cellulose nanocrystals (CNCs), as potential additives, on the properties and performance of phenol–formaldehyde (PF) adhesive resin. The steady-state viscosity of a commercial PF resol resin and three CNC–resin mixtures, containing 1–3 wt % CNCs, based on solids content, was measured with a rheometer as a function of shear rate. The viscosity of the PF resin itself was independent of shear rate. The viscosity–shear rate curves of the CNC–resin mixtures showed two regions, a shear thinning region at lower shear rates and a Newtonian region at higher shear rates. The low-shear-rate viscosity of the resin was greatly increased by the CNCs. The structure of the CNC–resin mixtures under quiescent conditions was analyzed by polarized light microscopy. The mixtures contained CNC aggregates, which could be disrupted by ultrasound treatment. The curing progressions of the resin and CNC–resin mixtures were analyzed by non-isothermal differential scanning calorimetry (DSC). The DSC curves showed two exotherms followed by an endotherm. The energy of activation for the first exotherm was reduced by the CNCs whereas the energy of activation for the second exotherm was not affected by the CNCs. Increasing CNC contents caused higher degrees of reaction conversion during the first curing stage and a greater loss of sample mass, attributed to formaldehyde release during resin cure. For analysis of the mechanical properties during and after cure, sandwich-type test specimens were prepared from southern yellow pine strips and the resin and CNC–resin mixtures. The mechanical properties of the test specimens were measured as a function of time and temperature by dynamic mechanical analysis (DMA). The time to incipient storage modulus increase decreased and the rate of relative storage modulus increase increased with increasing CNC content. The ultimate sample stiffness increased with increasing CNC content for CNC contents between 0 and 2 wt %, which was attributed to mechanical reinforcement of the resin by the CNCs. At a CNC content of 3 wt %, the ultimate sample stiffness was lower than at a CNC content of 2 wt % and the second tan δ maximum occurred earlier in the experiment, indicating an earlier onset of vitrification. The lower ultimate sample stiffness was attributed to premature quenching of the curing reactions through CNC-induced depression of the vitrification point. For analysis of the fracture performance, double cantilever beam test specimens were prepared from southern yellow pine beams and the resin and CNC–resin mixtures, using different hot-pressing times. Fracture energies were measured by mode I cleavage tests. Bondline characteristics were analyzed by light microscopy. At a hot-pressing time of 10 min, the fracture energy decreased with increasing CNC content, whereas it stayed constant for CNC contents between 1 and 3 wt % at a hot-pressing time of 8 min. The bondlines of resin mixtures containing CNCs exhibited voids, whereas those of the pure resin did not. CNCs had both benefitial and detrimental effects on the properties and performace of PF resin.
- Effects of the Non-ionic Surfactant Tween 80 on the Enzymatic Hydrolysis of Model Cellulose and Lignocellulosic SubstratesJiang, Feng (Virginia Tech, 2011-08-25)Non-ionic surfactants are known to enhance the biochemical conversion of lignocellulosic (LC) biomass to bioethanol. Their mechanisms of action, however, are incompletely understood. This research was conducted to elucidate the effects of the non-ionic surfactant Tween 80 on the enzymatic hydrolysis of cellulose and LC substrates. Model cellulose substrates were prepared from cellulose nanocrystals (CNCs) obtained by sulfuric acid hydrolysis of wood pulp. Two methods were developed for the removal of the sulfate groups on the CNCs, resulting from the use of sulfuric acid in their preparation. The effect of sulfate groups, which may be introduced into LC biomass during pretreatment with sulfuric acid, on the enzymatic hydrolysis of cellulose was studied with model cellulose substrates prepared from CNCs with different sulfate group densities. Adsorption of cellulases onto sulfated substrates increased with increasing sulfate group density but their rate of hydrolysis decreased. The decrease indicated an inhibitory effect of sulfate groups on the enzymatic hydrolysis of cellulose, possibly due to non-productive binding of the cellulases onto the substrates through electrostatic interactions instead of their cellulose binding domains. The effect of Tween 80 on the adsorption of cellulases onto lignin, often present as residual lignin in pretreated biomass, was studied with model lignin substrates, prepared from kraft lignin, organosolv lignin, and milled wood lignin. Cellulases appeared to adsorb onto the lignin substrates via both hydrophobic and polar interactions. Tween 80 molecules on the lignin substrates seemed to hinder cellulase adsorption via hydrophobic interactions and reduced the adsorption rate. Finally, the effects of lignin and Tween 80 on the enzymatic hydrolysis of cellulose and LC substrates were studied. Lignin hindered both the adsorption of cellulases onto the substrates and the enzymatic hydrolysis of the substrates. Tween 80 was found to form surfactant–protein complexes with cellulases in solution without compromising cellulase activity. Either substrate-adsorbed or in solution, Tween 80 had no effect on the hydrolysis of cellulose by cellulases. Substrate-adsorbed Tween 80 increased the apparent enzymatic hydrolysis rates of LC substrates but the ability of Tween 80 to increase their apparent hydrolysis rate depended strongly on their structural properties and the chemical properties of the lignin. Hence, Tween 80 may be able to mitigate the inhibitory effect of lignin on the enzymatic hydrolysis of pretreated biomass.
- Fundamental Analysis of Wood Adhesion PrimersHosen, Joshua Carter (Virginia Tech, 2010-09-08)Hydroxymethyl resorcinol (HMR) is an effective adhesion promoter (primer) for wood bonding; it dramatically improves adhesion and enhances bond durability against moisture exposure. In an effort to improve understanding of the HMR mechanism of action, this work compared HMR with two other chemical treatments investigated as wood primers: alkyl-HMR (a-HMR), an HMR variant having reduced crosslink density, and a 5% solution of polymeric methylenebis(phenylisocyanate) in N-methylpyrrolidone (solution referred to as "pMDI"). The experimental system was red oak (Quercus rubra) bonded with a moisture-cure polyurethane adhesive (PUR). The objective was to document wood rheological changes induced by the three primers, and determine if these changes correlated to primer efficacy in PUR-bonded red oak. Adhesion was tested in mode-I (opening) fracture using dual cantilever beam specimens. HMR and a-HMR proved to be highly effective primers for PUR-bonded red oak; both primers dramatically improved bondline toughness and durability. Relative to HMR, the reduced crosslink density in a-HMR did not impair primer efficacy. In contrast, the pMDI primer was ineffective; it reduced bondline toughness and durability. Solvent-submersion, torsional dynamic mechanical analysis (DMA) was conducted on primer-treated red oak (with specimens immersed in dimethylformamide). Using all three grain orientations, the lignin glass/rubber transition was carefully studied with attention directed towards primer-induced changes in stiffness (storage modulus), the glass transition temperature (Tg), the associated damping (tan ° maximum intensity), and the breadth of tan ° transition. It was found that primer effectiveness correlated with a reduction in damping intensity, and also with a Tg increase greater than 5°C. Determination of these correlations was complicated by grain dependency, and also by rheological changes caused by solvent treatments that were used as primer control treatments.
- Investigating biomass saccharification for the production of cellulosic ethanolZhu, Zhiguang (Virginia Tech, 2009-04-28)The production of second generation biofuels -- cellulosic ethanol from renewable lignocellulosic biomass has the potential to lead the bioindustrial revolution necessary to the transition from a fossil fuel-based economy to a sustainable carbohydrate economy. Effective release of fermentable sugars through biomass pretreatment followed by enzymatic hydrolysis is among the most costly steps for emerging cellulosic ethanol biorefineries. In this project, two pretreatment methods (dilute acid, DA, and cellulose solvent- and organic solvent-lignocellulose fractionation, COSLIF) for corn stover were compared. It was found that glucan digestibility of the corn stover pretreated by COSLIF was much higher, along with faster hydrolysis rate, than that by DA- pretreated. This difference was more significant at a low enzyme loading. Quantitative measurements of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were established to find out the cause. The COSLIF-pretreated corn stover had a CAC nearly twice that of the DA-pretreated biomass. Further supported by qualitative scanning electron microscopy images, these results suggested that COSLIF treatment disrupted microfibrillar structures within biomass while DA treatment mainly removed hemicelluloses, resulting in a much less substrate accessibility of the latter than of the former. It also concluded that enhancing substrate accessibility was the key to an efficient bioconversion of lignocellulose. A simple method for determining the adsorbed cellulase on cellulosic materials or pretreated lignocellulose was established for better understanding of cellulase adsorption and desorption. This method involved hydrolysis of adsorbed cellulase in the presence of 10 M of NaOH at 121oC for 20 min, followed by the ninhydrin assay for the amino acids released from the hydrolyzed cellulase. The major lignocellulosic components (i.e. cellulose, hemicellulose, and lignin) did not interfere with the ninhydrin assay. A number of cellulase desorption methods were investigated, including pH adjustment, detergents, high salt solution, and polyhydric alcohols. The pH adjustment to 13.0 and the elution by 72% ethylene glycol at a neutral pH were among the most efficient approaches for desorbing the adsorbed cellulase. For the recycling of active cellulase, a modest pH adjustment to 10.0 may be a low-cost method to desorb active cellulase. More than 90% of cellulase for hydrolysis of the pretreated corn stover could be recycled by washing at pH 10.0. This study provided an in-depth understanding of biomass saccharification for the production of cellulosic ethanol for cellulose hydrolysis and cellulase adsorption and desorption. It will be of great importance for developing better lignocellulose pretreatment technologies and improving cellulose hydrolysis by engineered cellulases.
- Lignocellulose Saccharification via Cellulose Solvent Based Fractionation Followed by Enzymatic Hydrolysis: the Last Obstacle to Integrated BiorefineriesSathitsuksanoh, Noppadon (Virginia Tech, 2011-08-22)The production of biofuels and biobased products from low-cost abundant renewable non-food lignocellulosic biomass will be vital to sustainable development because it will bring benefits to the environment, the economy, and the national security. The largest technical and economic challenge for emerging biorefineries is cost-effective release of fermentable sugars from recalcitrant structure of lignocellulosic biomass. Cellulose- and organic-solvent-based lignocelluloses fractionation (COSLIF) technology was employed to overcome biomass recalcitrance. Surface response methodology (SRM) showed that optimal COSLIF pretreatment conditions were 85% (w/v) H₃PO₄ and ~50 °C, regardless of moisture contents in biomass from 5-15% (w/w) for common reed. Under these conditions, the pretreated biomass was hydrolyzed fast with high glucan digestibilities at low enzyme loadings (i.e., one FPU of cellulase per gram of glucan). Crystallinity index (CrI) measurements by X-ray diffraction (XRD) and cross polarization/magic angle spinning (CP/MAS) ¹³C nuclear magnetic resonance (NMR), and cellulose accessibility to cellulase (CAC) determinations of COSLIF-pretreated biomass confirmed that highly ordered hydrogen-bonding networks in cellulose fibers of biomass were disrupted through cellulose dissolution in a cellulose solvent. This disruption of hydrogen bonding networks among cellulose chains resulted in a drastic increase in CAC values. Fourier transform infrared (FTIR) analyses on COSLIF-pretreated biomass revealed conformational changes in specific hydrogen bonding among cellulose chains due to COSLIF. While CrI is believed to be a key substrate characteristic that impacts enzymatic cellulose hydrolysis, studies in this thesis showed CrI values varied greatly depending on measurement techniques, calculation approaches, and sample preparation conditions. A correlation between CAC values and glucan digestibility of pretreated biomass showed that substrate accessibility is a key substrate characteristic impacting enzymatic cellulose hydrolysis. In summary, COSLIF can effectively overcome biomass recalcitrance. The resulting pretreated biomass has high CAC values, resulting in fast hydrolysis rates and high enzymatic glucan digestibilities of COSLIF-pretreated biomass at low enzyme usage.
- Mode-I Fracture in Bonded Wood: Studies of Adhesive Thermal Stability, and of the Effects of Wood Surface DeactivationGao, Tian (Virginia Tech, 2010-02-01)This work included two separate studies; the common theme in each was the use of mode-I fracture testing to evaluate wood adhesion. In the first study, mode-I fracture testing was used to compare the thermal stability of polyurethane (PUR) and resorcinol-formaldehyde (RF) wood adhesives. Bonded specimens for both adhesives were subjected to prolonged thermal exposure, and fracture testing was subsequently conducted after re-equilibration to standard test conditions. It was found that both PUR and RF suffered a significant fracture energy loss after heat treatment, and that RF was more thermally stable than PUR, as expected. However, both adhesives suffered significant thermal degradation, and fracture testing did not distinguish the RF system as being clearly superior to PUR. Dynamic mechanical analysis (DMA) was also used to analyze and compare the thermal softening of PUR and RF in terms of the decline in storage modulus. DMA results indicated that PUR specimens suffered greater stiffness loss due to simple thermal softening. Because fracture testing indicated that both adhesives suffered significant degradation, the DMA results suggested that the generally superior fire resistance of RF adhesives is born from greater high temperature stiffness; whereas the more compliant PUR suffers greater immediate softening during thermal exposure. In other words, both systems suffer from thermal degradation, but the more highly cross-linked RF system suffers less thermal softening and therefore maintains a greater load carrying capacity during fire exposure. In the second study, mode-I fracture testing was used to test the effects of wood surface thermal deactivation (surface energy reduction) on the adhesion between southern pine wood (Pinus spp.) and polyethylene (PE). Pine specimens were progressively surface deactivated by 185°C heat treatments for periods of 5, 15, and 60 minutes. Control and deactivated pine laminae were subsequently hotpressed/bonded using PE film as the adhesive. Mode-I fracture testing was conducted under the assumption of linear elasticity, however load/displacement test curves suffered from a severe degree of nonlinearity believed to be caused by PE bridging behind the advancing crack tip. Instead of applying a nonlinear data analysis, a standard linear elastic analysis was conducted and deemed acceptable for comparative purposes within this study. Under dry conditions (unweathered specimens), 5 and 15 minute thermal treatments resulted in progressively worse adhesion (lower fracture energies) when compared to control surfaces; but the 60 minute heat treatment improved adhesion relative to 5 and 15 minute treatments, and showed a trend of improving adhesion as surface deactivation became more extreme. Simulated-weather resistance was also studied and it was determined that the highest degree of surface deactivation slightly improved weather durability in comparison to control surfaces. Overall, the findings here were similar to those in a previously published work- thermal deactivation of wood surfaces shows promise as a method to improve adhesion between wood and nonpolar polyolefins.
- TEMPO-oxidized Nanocelluloses: Surface Modification and use as Additives in Cellulosic NanocompositesJohnson, Richard Kwesi (Virginia Tech, 2010-08-18)The process of TEMPO-mediated oxidation has gained broad usage towards the preparation of highly charged, carboxyl-functionalized polysaccharides. TEMPO-oxidized nanocelluloses (TONc) of high surface charge and measuring 3 to 5 nm in width have been recently prepared from TEMPO-oxidized pulp. This study examines as-produced and surface-hydrophobized TONc as reinforcing additives in cellulosic polymer matrices. In the first part of the work, covalent (amidation) and non-covalent (ionic complexation) coupling were compared as treatment techniques for the hydrophobization of TONc surfaces with octadecylamine (ODA). Subsequently, TONc and its covalently coupled derivative were evaluated as nanofiber reinforcements in a cellulose acetate butyrate (CAB) matrix. The properties of the resulting nanocomposites were compared with those of similarly prepared ones reinforced with conventional microfibrillated cellulose (MFC). It was found that both ionic complexation and amidation resulted in complete conversion of carboxylate groups on TONc surfaces. As a result of surface modification, the net crystallinity of TONc was lowered by 15 to 25% but its thermal decomposition properties were not significantly altered. With respect to nanocomposite performance, the maximum TONc reinforcement of 5 vol % produced negligible changes to the optical transmittance behavior and a 22-fold increase in tensile storage modulus in the glass transition region of CAB. In contrast, hydrophobized TONc and MFC deteriorated the optical transmittance of CAB by ca 20% and increased its tensile storage modulus in the glass transition region by only 3.5 and 7 times respectively. These differences in nanocomposite properties were attributed to homogeneous dispersion of TONc compared to aggregation of both the hydrophobized derivative and the MFC reference in CAB matrix. A related study comparing TONc with MFC and cellulose nanocrystals (CNC) as reinforcements in hydroxypropylcellulose (HPC), showed TONc reinforcements as producing the most significant changes to HPC properties. The results of dynamic mechanical analysis and creep compliance measurements could be interpreted based on similar arguments as those made for the CAB-based nanocomposites. Overall, this work revealed that the use of TONc (without the need for surface hydrophobization) as additives in cellulosic polymer matrices leads to superior reinforcing capacity and preservation of matrix transparency compared to the use of conventional nanocelluloses.