Browsing by Author "Rigby, J. R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currentsRigby, J. R.; Poelzing, Steven (2012-04)Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.
- The nuclear spectroscopic telescope array (NuSTAR) high-energy x-ray missionHarrison, F. A.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Zhang, W. W.; Boggs, S. E.; Stern, D.; Cook, W. R.; Forster, K.; Giommi, P.; Grefenstette, B. W.; Kim, Y.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Mao, P. H.; Miyasaka, H.; Mori, K.; Perri, M.; Pivovaroff, M. J.; Puccetti, S.; Rana, V. R.; Westergaard, N. J.; Willis, J.; Zoglauer, A.; An, H. J.; Bachetti, M.; Barriere, N. M.; Bellm, E. C.; Bhalerao, V.; Brejnholt, N. F.; Fuerst, F.; Liebe, C. C.; Markwardt, C. B.; Nynka, M.; Vogel, J. K.; Walton, D. J.; Wik, D. R.; Alexander, D. M.; Cominsky, L. R.; Hornschemeier, A. E.; Hornstrup, A.; Kaspi, V. M.; Madejski, G. M.; Matt, G.; Molendi, S.; Smith, D. M.; Tomsick, J. A.; Ajello, M.; Ballantyne, D. R.; Balokovic, M.; Barret, D.; Bauer, F. E.; Blandford, R. D.; Brandt, W. N.; Brenneman, L. W.; Chiang, J.; Chakrabarty, D.; Chenevez, J.; Comastri, A.; Dufour, F.; Elvis, M.; Fabian, A. C.; Farrah, D.; Fryer, C. L.; Gotthelf, E. V.; Grindlay, J. E.; Helfand, D. J.; Krivonos, R.; Meier, D. L.; Miller, J. M.; Natalucci, L.; Ogle, P.; Ofek, E. O.; Ptak, A.; Reynolds, S. P.; Rigby, J. R.; Tagliaferri, G.; Thorsett, S. E.; Treister, E.; Urry, C. M. (IOP Publishing Ltd., 2013-06)The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the similar to 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z less than or similar to 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element Ti-44; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 degrees inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.
- Recapitulation of an ion channel IV curve using frequency componentsRigby, J. R.; Poelzing, Steven (2011-02-08)INTRODUCTION: Presently, there are no established methods to measure multiple ion channel types simultaneously and decompose the measured current into portions attributable to each channel type. This study demonstrates how impedance spectroscopy may be used to identify specific frequencies that highly correlate with the steady state current amplitude measured during voltage clamp experiments. The method involves inserting a noise function containing specific frequencies into the voltage step protocol. In the work presented, a model cell is used to demonstrate that no high correlations are introduced by the voltage clamp circuitry, and also that the noise function itself does not introduce any high correlations when no ion channels are present. This validation is necessary before the technique can be applied to preparations containing ion channels. The purpose of the protocol presented is to demonstrate how to characterize the frequency response of a single ion channel type to a noise function. Once specific frequencies have been identified in an individual channel type, they can be used to reproduce the steady state current voltage (IV) curve. Frequencies that highly correlate with one channel type and minimally correlate with other channel types may then be used to estimate the current contribution of multiple channel types measured simultaneously. METHODS: Voltage clamp measurements were performed on a model cell using a standard voltage step protocol (-150 to +50 mV, 5mV steps). Noise functions containing equal magnitudes of 1-15 kHz frequencies (zero to peak amplitudes: 50 or 100mV) were inserted into each voltage step. The real component of the Fast Fourier transform (FFT) of the output signal was calculated with and without noise for each step potential. The magnitude of each frequency as a function of voltage step was correlated with the current amplitude at the corresponding voltages. RESULTS AND CONCLUSIONS: In the absence of noise (control), magnitudes of all frequencies except the DC component correlated poorly (|R|<0.5) with the IV curve, whereas the DC component had a correlation coefficient greater than 0.999 in all measurements. The quality of correlation between individual frequencies and the IV curve did not change when a noise function was added to the voltage step protocol. Likewise, increasing the amplitude of the noise function also did not increase the correlation. Control measurements demonstrate that the voltage clamp circuitry by itself does not cause any frequencies above 0 Hz to highly correlate with the steady-state IV curve. Likewise, measurements in the presence of the noise function demonstrate that the noise function does not cause any frequencies above 0 Hz to correlate with the steady-state IV curve when no ion channels are present. Based on this verification, the method can now be applied to preparations containing a single ion channel type with the intent of identifying frequencies whose amplitudes correlate specifically with that channel type.