Browsing by Author "Royle, J. Andrew"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Spatial capture-recapture for categorically marked populations with an application to genetic capture-recaptureAugustine, Ben C.; Royle, J. Andrew; Murphy, Sean M.; Chandler, Richard B.; Cox, John J.; Kelly, Marcella J. (Ecological Society of America, 2019-04)Recently introduced unmarked spatial capture-recapture (SCR), spatial mark-resight (SMR), and 2-flank spatial partial identity models (SPIMs) extend the domain of SCR to populations or observation systems that do not always allow for individual identity to be determined with certainty. For example, some species do not have natural marks that can reliably produce individual identities from photographs, and some methods of observation produce partial identity samples as is the case with remote cameras that sometimes produce single-flank photographs. Unmarked SCR, SMR, and SPIM share the feature that they probabilistically resolve the uncertainty in individual identity using the spatial location where samples were collected. Spatial location is informative of individual identity in spatially structured populations because a sample is more likely to have been produced by an individual living near the trap where it was recorded than an individual living further away from the trap. Further, the level of information about individual identity that a spatial location contains is related to two key ecological concepts, population density and home range size, which we quantify using a proposed Identity Diversity Index (IDI). We show that latent and partial identity SCR models produce imprecise and biased density estimates in many high IDI scenarios when data are sparse. We then extend the unmarked SCR model to incorporate categorical, partially identifying covariates, which reduce the level of uncertainty in individual identity, increasing the reliability and precision of density estimates, and allowing reliable density estimation in scenarios with higher IDI values and with more sparse data. We illustrate the performance of this "categorical SPIM" via simulations and by applying it to a black bear data set using microsatellite loci as categorical covariates, where we reproduce the full data set estimates with only slightly less precision using fewer loci than necessary for confident individual identification. We then discuss how the categorical SPIM can be applied to other wildlife sampling scenarios such as remote camera surveys, where natural or researcher-applied partial marks can be observed in photographs. Finally, we discuss how the categorical SPIM can be added to SMR, 2-flank SPIM, or other latent identity SCR models.
- Spatial Capture-Recapture With Partial Identity: An Application to Camera TrapsAugustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R. (2018-03)Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities-one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.