Browsing by Author "Sagduyu, Yalin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Adversarial Machine Learning for NextG Covert Communications Using Multiple AntennasKim, Brian; Sagduyu, Yalin; Davaslioglu, Kemal; Erpek, Tugba; Ulukus, Sennur (MDPI, 2022-07-29)This paper studies the privacy of wireless communications from an eavesdropper that employs a deep learning (DL) classifier to detect transmissions of interest. There exists one transmitter that transmits to its receiver in the presence of an eavesdropper. In the meantime, a cooperative jammer (CJ) with multiple antennas transmits carefully crafted adversarial perturbations over the air to fool the eavesdropper into classifying the received superposition of signals as noise. While generating the adversarial perturbation at the CJ, multiple antennas are utilized to improve the attack performance in terms of fooling the eavesdropper. Two main points are considered while exploiting the multiple antennas at the adversary, namely the power allocation among antennas and the utilization of channel diversity. To limit the impact on the bit error rate (BER) at the receiver, the CJ puts an upper bound on the strength of the perturbation signal. Performance results show that this adversarial perturbation causes the eavesdropper to misclassify the received signals as noise with a high probability while increasing the BER at the legitimate receiver only slightly. Furthermore, the adversarial perturbation is shown to become more effective when multiple antennas are utilized.
- How Can the Adversary Effectively Identify Cellular IoT Devices Using LSTM Networks?Luo, Zhengping Jay; Pitera, Will; Zhao, Shangqing; Lu, Zhuo; Sagduyu, Yalin (ACM, 2023-06-01)The Internet of Things (IoT) has become a key enabler for connecting edge devices with each other and the internet. Massive IoT services provided by cellular networks offer various applications such as smart metering and smart cities. Security of the massive IoT devices working alongside traditional devices such as smartphones and laptops has become a major concern. Protecting these IoT devices from being identified by malicious attackers is often the first line of defense for cellular IoT devices. In this paper, we provide an effective attacking method for identifying cellular IoT devices from cellular networks. Inspired by the characteristics of Long Short-Term Memory (LSTM) networks, we have developed a method that can not only capture context information but also adapt to the dynamic changes of the environment over time. Experimental validation shows a high detection rate with less than 10 epochs of training on public datasets.