Browsing by Author "Sifat, Ashrarul Haq"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Safety-Performance Framework for Computational Awareness in Autonomous RobotsSifat, Ashrarul Haq (Virginia Tech, 2024-01-02)This thesis investigates the analysis and optimization of safety and performance-critical computational tasks for autonomous robots, operating in unknown and unstructured environments with complex objectives under strict computational and power constraints. Our primary contribution is a novel safety-performance (SP) metric that emphasizes on safety while rewarding enhanced performance of real-time computational tasks, expanding the notion of nominal safety in the autonomous vehicle domain. We adopt the Stochastic Heterogeneous Parallel Directed Acyclic Graph (SHP-DAG) model to capture the uncertain nature of robotic applications and their required computations, modeling execution times using probability distributions instead of deterministic worst-case execution time (WCET). We argue that computational tasks enabling robotic autonomy, such as localization and mapping, path planning, task allocation, depth estimation, and optical flow, must be scheduled and optimized to guarantee timely and correct behavior while allowing for runtime reconfiguration of scheduling parameters. To attain computational awareness in autonomous robots, we conduct a data-driven study of these computational tasks from the resource management perspective, profiling and analyzing their timing, power, and memory performance across three embedded computing platforms. Our SP metric allows us to apply the schedulers First-In-First-Out (FIFO) and Completely Fair Scheduler (CFS) of the Linux kernel on complex robotic computational tasks and compare the SP metric with baseline metrics, such as average and worst-case makespan. Extensive experimental results on NVIDIA Jetson AGX Xavier hardware demonstrate the effectiveness of the proposed SP metric in managing computational tasks while balancing safety and performance in robotic systems. Our findings reveal a correlation between task performance and a robot's operational environment, which justifies the concept of computation-aware robots and highlights the importance of our work as a crucial step towards this goal. Finally, we also integrate a custom scheduler with the FIFO priorities with our SHP-DAG and show the efficacy of our framework in comparison to default fair scheduler.
- Tactile Sensing System Integrated to Compliant Foot of Humanoid Robot for Contact Force MeasurementSifat, Ashrarul Haq (Virginia Tech, 2018-12-12)Human beings have a touch and force estimation mechanism beneath their feet. They use this feeling of touch and force to maintain balance, walk, run and perform various agile motions. This paper presents a new sensor platform beneath the humanoid feet, enabled by a pragmatic model based compliant foot design and sensor configuration that mimics the human tactile sensory system for contact force measurement in humanoid robots. Unlike previous force sensor based approaches, the system is defined as a total and sufficient method of Ground Reaction Force (GRF) and Zero Moment Point (ZMP) measurement for balancing and walking using contact force feedback in mid to full sized humanoids. The conventional systems for the GRF and ZMP measurement are made of heavy metallic parts that tend to be bulky and vulnerable to inertial noises upon high acceleration. In addition to low cost and reliable operation, the proposed system can withstand shock and enable agile motion much like humans do with their footpad. The proposed foot is manufactured using state-of-the-art technique with elastomer padding which not only protects the sensors but also acts as a compliance beneath the foot giving integrity in structural design. This composite layer provides compliance and traction for foot collision while the contact surfaces are sampled for pressure distribution which can be mapped into three axis force and ZMP. A single step training process is required to relate the sensor readings to force measurement. The system’s capability of contact force measurement, subsequent ZMP estimation is experimentally verified with the application of appropriate software. Moreover, a simulation study has been conducted via Finite Element Analysis (FEA) of the footpad structure to analyze the proposed footpad structure. The experimental results demonstrate why this can be a major step toward a biomimetic, affordable yet robust contact force and ZMP measurement method for humanoid robots. This work was supported by the Office of Naval Research, Grant N00014-15-1-2128 as part of development of Project SAFFiR (Shipboard Autonomous Firefighting Robot).