Browsing by Author "Southward, Steve C."
Now showing 1 - 20 of 217
Results Per Page
Sort Options
- 3D Path Planning for Radiation Scanning of Cargo ContainersBraun, Patrick Douglas (Virginia Tech, 2022-10-28)Every year, the ports of entry of the continental United States receive millions of containers from container ships for processing. These containers contain everything that the country imports, and sometimes regulated items can be hidden inside them in attempt to smuggle them illegally into the country. Some of these items may be radioactive material meant for criminal purposes and represent a threat to national security. The containers are currently being scanned for radioactivity as they leave the port, but before leaving the port, containers can sit inside the port for weeks. It can be beneficial to scan these containers before they are picked up to catch the illegal material sooner and reduce the risk of danger to those nearby. Uncrewed Aerial Systems can be useful for scanning container stacks in container fields since they can be attached with sensors and reach heights that are difficult for humans. They can also scan autonomously, requiring less over watch from people. This thesis attempts to solve the problem of autonomous search by using an initial 3D scan of the search area to input into a 3D path planning algorithm to generate a flight path that will sufficiently scan the search area while minimizing flight time. Coverage is a main area of concern, as well is computational complexity and time. In order to maintain security of the aircraft, the path must be generated on-board the aircraft, and as such use on-board, lightweight, computers. The approach taken in this thesis is by breaking the problem down into 2D layers, and then developing paths on each layer based on where the obstacles are. In order to maximize coverage, contours are generated around the obstacles. The vertices of the contours are then treated like points to visit in a Travelling Salesman Problem. To incentivize paths that run alongside the obstacles for better radiation detection, paths that do not run close to the obstacles are given a higher cost than those that do, resulting in a cost-minimizing path planning algorithm yielding paths that stay close to obstacles. The Travelling Salesman Problem algorithm then yields the most time effective path to cover the area while maintaining a distance healthy for radiation scanning from the obstacles.
- 48V/1V Voltage Regulator for High-Performance MicroprocessorsLou, Xin (Virginia Tech, 2024-06-07)The data center serves as the hardware foundation for artificial intelligence (AI) and cloud computing, constituting a global market that has surpassed $200 billion and is experiencing rapid growth. It is estimated that data centers contribute to 1.7-2.2% of the world's electricity generation. Conversely, up to 80% of the long-term operational expenditure of data centers is allocated to electricity consumption. Consequently, enhancing the efficiency of electric energy conversion in data centers is not only economically advantageous but also crucial for achieving carbon-neutral objectives. Through collaborative efforts between the industrial and academic sectors, substantial advancements have been achieved in the energy conversion efficiency of data centers. Most converters within the data center power architecture now boast efficiencies exceeding 99%. However, the bottleneck for further improvements in system efficiency lies in the voltage regulator modules (VRMs), which grapple with challenges such as high conversion ratios, elevated output currents, and substantial load transients. These challenges are particularly pronounced for AI processors and graphics processing units (GPUs), given their heightened power demands compared to conventional central processing units (CPUs). To enhance system efficiency, a revolutionary shift in power architecture has been introduced, advocating for the adoption of a 48 V data center power architecture to replace the conventional 12 V architecture. The higher 48 V bus voltage significantly reduces distribution loss on the bus. However, the primary challenge lies in managing high step-down voltage conversion while maintaining high efficiency. Additionally, high-performance microprocessors, including CPUs, GPUs, application-specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs), require hundreds of amperes of current at low voltage levels (e.g., GPUs need >220 A at <1.85 V, CPUs need >1000 A at <1.0 V). An unavoidable consequence of upscaling processor current and size is the substantial resistive loss in VRMs. This is because such loss scales with the square of the current [I2R], and the power path area (and resistance R) expands with the processor size. The Power Delivery Network (PDN) resistance in the "last inch" of the power delivery path is becoming a limiting factor in processor performance and system efficiency. The key to reducing the I2R loss is minimizing the distance between the VRMs and processors by utilizing ultra-high power density VRMs. Furthermore, the design of Voltage Regulator Modules (VRMs) for high-performance microprocessors encounters additional formidable challenges, especially when dealing with the requirements of contemporary computing architectures. The key hurdles encompass achieving high efficiency, handling low output voltage, accommodating wide voltage ranges, managing elevated output currents, and addressing significant load transients. These challenges prompt both academia and industry to explore novel topologies, innovative magnetic integration methods, and advanced control strategies. The prevailing trend in state-of-the-art 48V solutions centers around the adoption of two-stage configurations, wherein the second stage can leverage conventional 12V solutions. However, this approach imposes limitations on power density and efficiency, given that power traverses two cascaded DC/DC converters. Additionally, the footprint of decoupling capacitors and I2R loss on the intermedia bus between the two stages is emerging as a noteworthy consideration in designs. In response to these challenges, a novel proposition introduces a single-stage 48V coupled-transformer voltage regulator (CTVR) tailored for high-performance microprocessors. This innovative design aims to deliver ultra-high power density and superior efficiency. The converter employs a unique magnetic structure that integrates transformers and coupled inductors from multiple current-doubler rectifiers. Significantly, by utilizing the magnetizing inductors of transformers as output inductors, there is a substantial reduction in the size of magnetic components. Various implementations are explored, each addressing specific design objectives. Initially, a single-stage coupled-transformer voltage regulator (CTVR) with discrete magnetics is presented, offering a 48V solution while maintaining a comparable size and cost to a state-of-the-art 12V multiphase buck regulator. Leveraging the indirect-coupling concept, magnetic components are standardized, enabling scalability and facilitating multiphase operation. A prototype is constructed and tested to validate the CTVR's performance. With a 48V input and 1.8V output, the peak efficiency registers at 92.1%, and the power area density is 0.45 W/mm2. However, voltage ringing is observed in both primary and secondary switches due to a larger leakage inductance and hard-switching operation. Subsequently, a transition to soft-switching operation is implemented to address the voltage ringing issue. The leakage inductance is intentionally designed to supply energy for zero-voltage switching (ZVS) of primary switches, turning the previously perceived drawback into an opportunity for efficiency improvement. As a result, testing demonstrates a peak efficiency increase of more than 1%, reaching 93.6%. Furthermore, efforts are made to enhance small leakage inductance by employing well-interleaved printed circuit board (PCB) windings. Following a series of design optimizations, the prototype achieves a peak efficiency of 93.1% and a remarkable power density of 1037 W/in3, accounting for gate driver loss and size. Despite an increase in cost associated with PCB windings, this proposed solution attains the highest power density and stands as the pioneering 48V single-stage design surpassing 1000 W/in3 power density. When prioritizing efficiency in the design, the quasi-parallel Sigma converter emerges as another optimal choices for a 48V solution. However, the intricate and distinctive quasi-parallel structure of the Sigma converter necessitates a thorough examination of its control mechanism, particularly in light of the rapid load transient response requirements. To address this, an adaptive voltage positioning (AVP) design for the Sigma converter is introduced, employing enhanced V2 control. Guidelines and limitations are provided to stabilize the converter and enhance its overall performance. Ultimately, the AVP function and load transient performance are substantiated through simulation and experimental results.
- 6.78MHz Omnidirectional Wireless Power Transfer System for Portable Devices ApplicationFeng, Junjie (Virginia Tech, 2021-01-11)Wireless power transfer (WPT) with loosely coupled coils is a promising solution to deliver power to a battery in a variety of applications. Due to its convenience, wireless power transfer technology has become popular in consumer electronics. Thus far, the majority of the coupled coils in these systems are planar structure, and the magnetic field induced by the transmitter coil is in one direction, meaning that the energy power transfer capability degrades greatly when there is some angle misalignment between the coupled coils. To improve the charging flexibility, a three–dimensional (3D) coils structure is proposed to transfer energy in different directions. With appropriate modulation current flowing through each transmitter coil, the magnetic field rotates in different directions and covers all the directions in 3D space. With omnidirectional magnetic field, the charging platform can provide energy transfer in any direction; therefore, the angle alignment between the transmitter coil and receiver coil is no longer needed. Compensation networks are normally used to improve the power transfer capability of a WPT system with loosely coupled coils. The resonant circuits, formed by the loosely coupled coils and external compensation inductors or capacitors, are crucial in the converter design. In WPT system, the coupling coefficient between the transmitting coil and the receiving coil is subject to the receiver's positioning. The variable coupling condition is a big challenge to the resonant topology selection. The detailed requirements of the resonant converter in an omnidirectional WPT system are identified as follows: 1). coupling independent resonant frequency; 2). load independent output voltage; 3). load independent transmitter coil current; 4). maximum efficiency power transfer; 5). soft switching of active devices. A LCCL-LC resonant converter is derived to satisfy all of the five requirements. In consumer electronics applications, Megahertz (MHz) WPT systems are used to improve the charging spatial freedom. 6.78 MHz is selected as the system operation in AirFuel standard, a wireless charging standard for commercial electronics. The zero voltage switching (ZVS) operation of the switching devices is essential in reducing the switching loss and the switching related electromagnetic interference (EMI) issue in a MHz system; therefore, a comprehensive evaluation of ZVS condition in an omnidirectional WPT system is performed. And a design methodology of the LCCL-LC converter to achieve ZVS operation is proposed. The big hurdle of the WPT technology is the safety issue related to human exposure of electromagnetic fields (EMF). A double layer shield structure, including a magnetic layer and a conductive layer, is proposed in a three dimensional charging setup to reduce the stray magnetic field level. A parametric analysis of the double shield structure is conducted to improve the attenuation capability of the shielding structure. In an omnidirectional WPT system, the energy can be transferred in any direction; however the receiving devices has its preferred field direction based on its positioning and orientation. To focus power transfer towards targeted loads, a smart detection algorithm for identifying the positioning and orientation of receiver devices based on the input power information is presented. The system efficiency is further improved by a maximum efficiency point tracking function. A novel power flow control with a load combination strategy to charge multiple loads simultaneously is explained. The charging speed of the omnidirectional WPT system is greatly improved with proposed power flow control.
- Accurate Small-Signal Modeling for Resonant ConvertersHsieh, Yi-Hsun (Virginia Tech, 2020-11-24)In comparison with PWM converters, resonant converters are gaining increasing popularity for cases in which efficiency and power density are at a premium. However, the lack of an accurate small-signal model has become an impediment to performance optimization. Many modeling attempts have been made to date. Besides the discrete time-domain modeling, most continuous-time modeling approaches are based on fundamental approximation, and are thus unable to provide sufficient accuracy for practical use. An equivalent circuit model was proposed by Yang, which works well for series resonant converters (SRCs) with high Q (quality factor), but which is inadequate for LLC resonant converters. Furthermore, the model is rather complicated, with system orders that are as high as five and seven for the SRC and LLC converter, respectively. The crux of the modeling difficulty is due to the underlying assumption based on the use of a band-pass filter for the resonant tank in conjunction with a low-pass output filter, which is not the case for most practical applications. The matter is further complicated by the presence of a rectifier, which is a nonlinearity that mixes and matches the original modulation frequency. Thus, the modulation signal becomes intractable when using a frequency-domain modeling approach. This dissertation proposes an extended describing function modeling that is based on a Fourier analysis on the continuous-time-domain waveforms. Therefore, all important contributions from harmonics are taken into account. This modeling approach is demonstrated on the frequency-controlled SRC and LLC converters. The modeling is further extended to, with great accuracy, a charge-controlled LLC converter. In the case of frequency control, a simple third-order equivalent circuit model is provided with high accuracy up to half of the switching frequency. The simplified low-frequency model consists of a double pole and a pair of right-half-plane (RHP) zeros. The double pole, when operated at a high switching frequency, manifests the property of a well-known beat frequency between the switching frequency and the resonant frequency. As the switching frequency approaches the resonant frequency of the tank, a new pair of poles is formed, representing the interaction of the resonant tank and the output filter. The pair of RHP zeros, which contributes to additional phase delay, was not recognized in earlier modeling attempts. In the case of charge control, a simple second-order equivalent circuit model is provided. With capacitor voltage feedback, the order of the system is reduced. Consequently, the resonant tank behaves as an equivalent current source and the tank property is characterized by a single pole. The other low-frequency pole represents the output capacitor and the load. However, the capacitor voltage feedback cannot eliminate the high-frequency poles and the RHP zeros. These RHP zeros may be an impediment for high-bandwidth design if not properly treated. Based on the proposed model, these unwanted RHP zeros can be mitigated by either changing the resonant tank design or by proper feedback compensation. The accurate model is essential for a high-performance high-bandwidth LLC converter.
- Accurate Wheel-rail Dynamic Measurement using a Scaled Roller RigKothari, Karan (Virginia Tech, 2018-08-08)The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). The study also aims at determining the effect of naturally generated third-body layer deposits (because of the wear of the wheel and/or roller) on creep or traction forces. The wheel-rail contact forces, also referred to as traction forces, are critical for all aspects of rail dynamics. These forces are quite complex and they have been the subject of several decades of research, both in experiments and modeling. The primary intent of the VT-FRA Roller Rig is to provide an experimental environment for more accurate testing and evaluation of some of the models currently in existence, as well as evaluate new hypothesis and theories that cannot be verified on other roller rigs available worldwide. The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact. Experimental studies are conducted on the VT ��" FRA Roller Rig that involved varying the angle of attack, wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and wheel wear, to study their effect on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction.
- Acoustic Response Validation of a Finite Cylindrical Shell with Multiple Loading ConditionsGallagher, Chad Taylor (Virginia Tech, 2018-06-25)Cylindrical shells are used for a variety of engineering applications such as undersea vehicles and aircraft. The models currently used to determine the vibration characteristics of these shells are often approximated by assuming the shell is infinitely long or has shear-diaphragm boundary conditions. These models also ignore complex loading conditions such as plane waves in favor of point forces or free vibration models. This work expands on the capabilities of these models by examining the acoustic response of a finite length cylinder with flat plate endcaps to multiple types of distributed loading conditions. Starting with the Donnell equations of motion for thin cylinders and the classical plate theory equations of motion for the endcaps, spacial domain displacement field solutions for the shell and plates take an assumed form that includes unknown wave propagation coefficients. These solutions are substituted into stress boundary conditions and continuity equations evaluated at the intersections between the shell and plates. An infinite summation is contained within the boundary conditions and continuity equations which is decoupled, truncated, and compiled in matrix form to allow for the propagation coefficients to be found via a convergent sum of vectors. System responses due to a ring loading and multiple cases of plane waves are studied and validated using a finite element analysis of the system. It is shown that the analytical model matches the finite element model well.
- Active Force Correction of Off-Nominal Structures Using Intelligent ScaffoldingEverson, Holly Kathleen (Virginia Tech, 2024-10-17)The culmination of this research focuses on the area of structural support and stability as it relates to the field of large space structures. Fitting into the branch of in-space assembly, servicing, and manufacturing (ISAM), this topic covers essential subject matter areas of robotic manipulation, repair, state estimation, and structural health. As the next generation of space structures includes increased areas of modularity, the nature of structures built in-space lends itself significantly to repair efforts. With plans for these repair efforts in place, the lifetime of damaged structures can be greatly extended leading to a greater chance of mission success. By considering how repair efforts factor into the assembly scope, critical failures in large trusses, especially those involving single-point structural failures, can be mitigated. To do this, external forces are applied to the damaged structure utilizing an intelligent scaffolding formulation. This methodology employs robots to strategically apply loads to re-route abnormal stress and strain paths, correct for resulting deflections, and stabilize the structure itself. These tasks are vital to the safety of the structure and must take place before any repair efforts are considered in an effort to prevent cascading damage. The following research explores this damage simulation and correction paradigm through a variety of truss initial conditions, which allow for a suite of deflection responses. Utilizing these deflection responses a safe path for applying loads incrementally through generated waypoints is created with the help of the finite element modeler Ansys and a Python script. The ability for this system to successfully realign the wide scope of truss cases showcases that it is a truly adaptive system. Although this work is primarily proven within a simulation space, efforts to contextualize in a physical system and explore the elements needed to implement this method are also described. Finally, although this research is presented within the scope of damage repair, the final chapter looks to apply this method to other similarly unsupported structures by examining how critical it can be during assembly scenarios.
- Active Suspension Design Requirements for Compliant Boundary Condition Road DisturbancesSrinivasan, Anirudh (Virginia Tech, 2017-09-05)The aim of suspension systems in vehicles is to provide the best balance between ride and handling depending on the operating conditions of a vehicle. Active suspensions are far more effective over a variety of different road conditions compared to passive suspension systems. This is because of their ability to store and dissipate energy at different rates. Additionally, they can even provide energy of their own into the rest of the system. This makes active suspension systems an important topic of research in suspension systems. The biggest benefit of having an active suspension system is to be able to provide energy into the system that can minimize the response of the sprung mass. This is done using actuators. Actuator design in vehicle suspension system is an important research topic and a lot of work has been done in the field but little work has been done to estimate the peak control force and bandwidth required to minimize the response of the sprung mass. These two are very important requirements for actuator design in active suspensions. The aim of this study is estimate the peak control force and bandwidth to minimize the acceleration of the sprung mass of a vehicle while it is moving on a compliant surface. This makes the road surface a bi-lateral boundary and hence, the total system is a combination of the vehicle and the compliant road. Generalized vehicle and compliant road models are created so that parameters can be easily changed for different types of vehicles and different road conditions. The peak control force is estimated using adaptive filtering. A least mean squares (LMS) algorithm is used in the process. A case study with fixed parameters is used to show the results of the estimation process. The results show the effectiveness of an adaptive LMS algorithm for such an application. The peak control force and the bandwidth that are obtained from this process can then be used in actuator design.
- Adaptive and Passive Non-Visual Driver Assistance Technologies for the Blind Driver Challenge®D'Angio, Paul Christopher (Virginia Tech, 2012-04-30)This work proposes a series of driver assistance technologies that enable blind persons to safely and independently operate an automobile on standard public roads. Such technology could additionally benefit sighted drivers by augmenting vision with suggestive cues during normal and low-visibility driving conditions. This work presents a non-visual human-computer interface system with passive and adaptive controlling software to realize this type of driver assistance technology. The research and development behind this work was made possible through the Blind Driver Challenge® initiative taken by the National Federation of the Blind. The instructional technologies proposed in this work enable blind drivers to operate an automobile through the provision of steering wheel angle and speed cues to the driver in a non-visual method. This paradigm imposes four principal functionality requirements: Perception, Motion Planning, Reference Transformations, and Communication. The Reference Transformation and Communication requirements are the focus of this work and convert motion planning trajectories into a series of non-visual stimuli that can be communicated to the human driver. This work proposes two separate algorithms to perform the necessary reference transformations described above. The first algorithm, called the Passive Non-Visual Interface Driver, converts the planned trajectory data into a form that can be understood and reliably interacted with by the blind driver. This passive algorithm performs the transformations through a method that is independent of the driver. The second algorithm, called the Adaptive Non-Visual Interface Driver, performs similar trajectory data conversions through methods that adapt to each particular driver. This algorithm uses Model Predictive Control supplemented with Artificial Neural Network driver models to generate non-visual stimuli that are predicted to induce optimal performance from the driver. The driver models are trained online and in real-time with a rapid training approach to continually adapt to changes in the driver's dynamics over time. The communication of calculated non-visual stimuli is subsequently performed through a Non-Visual Interface System proposed by this work. This system is comprised of two non-visual human computer interfaces that communicate driving information through haptic stimuli. The DriveGrip interface is pair of vibro-tactile gloves that communicate steering information through the driver's hands and fingers. The SpeedStrip interface is a vibro-tactile cushion fitted on the driver's seat that communicates speed information through the driver's legs and back. The two interfaces work simultaneously to provide a continuous stream of directions to the driver as he or she navigates the vehicle.
- Adaptive Control of a Camera-Projection System using Vision-Based FeedbackLiao, Chwen Kai (Virginia Tech, 2016-04-15)This thesis derives an vision based feedback control strategy for a class of uncertain projector-camera systems that are used to animate two dimensional projected images on complex, three dimensional, articulated target objects. The target object of the robotic system is articulated using an open loop control strategy that generates a desired sequence of target poses that are designed using commercially available geometric modeling software. The ideal or desired image sequences are subsequently rendered in the geometric modeling software using an ideal camera/projector pose and ideal intrinsic parameter camera model. The rendered imagery from the ideal camera and projector pose are subsequently used to define tracking performance for the feedback control of the camera and projector. Uncertainty in actuator models of the camera and projector actuator subsystems in this paper includes contributions due to imprecision in camera pose and in intrinsic camera parameters. A feedback control strategy is derived that employs pixel coordinates of multiple tracked feature points in the target image sequence for pose estimation and tracking control problems. We establish sufficient conditions that guarantee the convergence and asymptotic stability of the pose estimation and tracking control problems for the class of uncertain, nonlinear systems studied in this thesis. Several numerical studies are summarized in the thesis that provide confidence in the derived theoretical results and further suggest robustness of the control strategy for the considered uncertainty class.
- Adaptive Predictor-Based Output Feedback Control of Unknown Multi-Input Multi-Output Systems: Theory and Application to Biomedical Inspired ProblemsNguyen, Chuong Hoang (Virginia Tech, 2016-06-03)Functional Electrical Stimulation (FES) is a technique that applies electrical currents to nervous tissue in order to actively induce muscle contraction. Recent research has shown that FES provides a promising treatment to restore functional tasks due to paralysis caused by spinal cord injury, head injury, and stroke, to mention a few. Therefore, the overarching goal of this research work is to develop FES controllers to enable patients with movement-disorder to control their limbs in a desired manner and, in particular, to aid Parkinson's patients to suppress hand tremor. In our effort to develop strategies for muscle stimulation control, we first implement a model-based control technique assuming that all the states are measurable. The Hill-type muscle model coupled with a simplified 2DoF model of the arm is used to study the performance of our proposed adaptive sliding mode controller for simulation purpose. However, in the more practical situations, human limb dynamics are extremely complicate and it is inadequate to use model based controllers, especially considering there are still technical limitations that allow in vivo measurements of muscle activity. To tackle these challenges, we have developed output feedback adaptive control approaches for a class of unknown multi-input multi-output systems. Such control strategies are first developed for linear systems, and then extended to the nonlinear case. The proposed controllers, supported by experimental results, require minimum knowledge of the system dynamics and avoid many restrictive assumptions typically found in the literature. Therefore, we expect that the results introduced in this dissertation can provide a solution for a wide class of nonlinear uncertain systems, with focus on practical issues such as partial state measurement and the presence of mismatched uncertainties.
- Adaptive Rollover Control Algorithm Based on an Off-Road Tire ModelHopkins, Brad Michael (Virginia Tech, 2009-11-30)Due to a recent number of undesired rollovers in the field for the studied vehicle, rollover mitigation strategies have been investigated and developed. This research begins with the study of the tire, as it is the single component on the vehicle responsible for generating all of the non-inertial forces to direct the motion of the vehicle. Tire force and moment behavior has been researched extensively and several accurate tire models exist. However, not much research has been performed on off-road tire models. This research develops an off-road tire model for the studied vehicle by first using data from rolling road testing to develop a Pacejka Magic Formula tire model and then extending it to off-road surfaces through the use of scaling factors. The scaling factors are multipliers in the Magic Formula that describe how different aspects of the force and moment curves scale when the tire is driven on different surfaces. Scaling factors for dirt and gravel driving surfaces were obtained by using an existing portable tire test rig to perform force and moment tests on a passenger tire driven on these surfaces. The off-road tire model was then used as a basis for developing control algorithms to prevent vehicle rollover on off-road terrain. Specifically, a direct yaw control (DYC) algorithm based on Lyapunov direct method and an emergency roll control (ERC) algorithm based on a rollover coefficient were developed. Emergency evasive maneuvers were performed in a simulation environment on the studied vehicle driven on dry asphalt, dirt, and gravel for the controlled and uncontrolled cases. Results show that the proposed control algorithms significantly improve vehicle stability and prevent rollover on a variety of driving surfaces.
- Alternate Fault testing on a Bus on a Dynamic Position VesselMoorman, Anna Julia (Virginia Tech, 2015-09-18)Direct fault testing onboard Dynamic Position Vessels is a requirement to maintain the ships classification and ensure redundancy of the power system onboard to maintain position. The most vulnerable part of the ship when testing occurs is when a three phase fault is placed on a main bus. This puts tremendous amount of strain on the system. This thesis offers an alternate and safer way to ensure the protection equipment is working properly by using a fault signal using from Programmable Logic Controller in conjunction with the protection relays. A working PSCAD model of Transocean's DEEPWATER CHAMPION was developed using a one line diagram. Using the developed PSCAD model three phase fault currents could be calculated and then simulated as a scaled down secondary current to use for testing the protection relays. To test the develop testing system different bus configurations were analyzed to determine loss of thruster capabilities which deter the vessel to maintain position.
- An Analytical Motion Filter for Humanoid RobotsMuecke, Karl James (Virginia Tech, 2009-03-31)Mimicking human motion with a humanoid robot can prove to be useful for studying gaits, designing better prostheses, or assisting the elderly or disabled. Directly mimicking and implementing a motion of a human on a humanoid robot may not be successful because of the different dynamic characteristics between them, which may cause the robot to fall down due to instability. Using the Zero Moment Point as the stability criteria, this work proposes an Analytical Motion Filter (AMF), which stabilizes a reference motion that can come from human motion capture data, gait synthesis using kinematics, or animation software, while satisfying common constraints. In order to determine how the AMF stabilized a motion, the different kinds of instabilities were identified and classified when examining the reference motions. The different cases of instability gave more insight as to why a particular motion was unstable: the motion was too fast, too slow, or inherently unstable. In order to stabilize the gait two primary methods were utilized: time and spatial scaling. Spatial scaling scaled the COM trajectory down towards a known stable trajectory. Time scaling worked similarly by changing the speed of the motion, but was limited in effectiveness based on the types of instabilities in the motion and the coupling of the spatial directions. Other constraints applied to the AMF and combinations of the different methods produced interesting results that gave more insight into the stability of the gait. The AMF was tested using both simulations and physical experiments using the DARwIn miniature humanoid robot developed by RoMeLa at Virginia Tech as the test platform. The simulations proved successful and provided more insight to understanding instabilities that can occur for different gait generation methods. The physical experiments worked well for non-walking motions, but because of insufficient controllability in the joint actuators of the humanoid robot used for the experiment, the high loads during walking motions prevented them from proper testing. The algorithms used in this work could also be expanded to legged robots or entirely different platforms that depend on stability and can use the ZMP as a stability criterion. One of the primary contributions of this work was showing that an entire reference motion could be stabilized using a single set of closed form solutions and equations. Previous work by others considered optimization functions and numeric schemes to stabilize all or a portion of a gait. Instead, the Analytical Motion Filter gives a direct relationship between the input reference motion and the resulting filtered output motion.
- ANC of UAS Rotor Noise using Virtual Error SensorsPolen, Melissa Adrienne (Virginia Tech, 2021-03-12)Traditional active noise control (ANC) systems rely on a physical sensor to measure the error signal at the desired location of attenuation. The error signal is then used to update an adaptive controller, which ultimately attenuates the measured response. However, it is not always practical to use traditional ANC in real-world applications. For example, as small unmanned aerial systems (UAS) become more commonly used, community noise exposure also increases, along with the desire to reduce UAS noise. Traditional ANC systems that rely on physical sensors at observer locations are impractical, since a UAS does not typically have real-time access to the response at an observer's ears, which is realistically in the far-field. Virtual error sensing (VES) can augment an ANC system using near-field measurements to estimate the response at a desired far-field location. In this way, the VES technique effectively shifts the zone of quiet from the location of the physical sensor(s) to a different "virtual" location. This thesis begins by outlining past work that used traditional ANC methods and virtual error sensing techniques. Numerical modeling results showing the predicted spatial change in SPL achieved using a virtual sensor will be presented. Experimental tests used ANC to attenuate the noise from a single UAS rotor at far-field locations using a near-field microphone and the remote microphone technique (RMT) to develop the VES. The results of the VES alone and with an ANC approach at several far-field virtual locations will be presented and discussed.
- Animal Motion Analysis and Approximation for RoboticsLiu, Bowei (Virginia Tech, 2022-06-07)As the robotic industry has matured, the study of animal motion has given rise to many robot designs. Researchers from multiple areas, such as biomechanics, control theory, and machine learning, have spent their energy and efforts making robots more realistic. The intent is that the automatic system can replace real animals and even perform certain tasks in harsh, or even dangerous environments. However, animal motions encompass a wide range of motion that depends on body geometries and various animal behaviors. From human walking to lizards crawling, from dogs running to horses pacing, many studies of motion only focus on one species or a few behaviors. An ever-increasing collection of papers are published that study animal motions for different species and motion regimes, and these are often based on video footage and motion capture data. This is particularly true for human motion research. While there are huge volumes of data acquired from motion capture and video, not many researches as of yet are using dynamical system analysis techniques such as dynamic mode decomposition, extended dynamic mode decomposition, or even Koopman method to understand and compare the motion across different species. Thus, the goal of this thesis is to further develop the methods mentioned above to analyze and characterize animal motion. The algorithms derived should apply regardless the shape of the body or the number of degrees of freedom for the joins. Using strategies from statistical learning theory and Koopman operator theory, several methods are derived and compared. The analysis culminates in a motion approximation, that subsequently could be used in robotic control to emulate an animal motion as much as possible.
- Anthropomimetic Control Synthesis: Adaptive Vehicle Traction ControlKirchner, William (Virginia Tech, 2012-03-22)Human expert drivers have the unique ability to build complex perceptive models using correlated sensory inputs and outputs. In the case of longitudinal vehicle traction, this work will show a direct correlation in longitudinal acceleration to throttle input in a controlled laboratory environment. In fact, human experts have the ability to control a vehicle at or near the performance limits, with respect to vehicle traction, without direct knowledge of the vehicle states; speed, slip or tractive force. Traditional algorithms such as PID, full state feedback, and even sliding mode control have been very successful at handling low level tasks where the physics of the dynamic system are known and stationary. The ability to learn and adapt to changing environmental conditions, as well as develop perceptive models based on stimulus-response data, provides expert human drivers with significant advantages. When it comes to bandwidth, accuracy, and repeatability, automatic control systems have clear advantages over humans; however, most high performance control systems lack many of the unique abilities of a human expert. The underlying motivation for this work is that there are advantages to framing the traction control problem in a manner that more closely resembles how a human expert drives a vehicle. The fundamental idea is the belief that humans have a unique ability to adapt to uncertain environments that are both temporal and spatially varying. In this work, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy. The proposed anthropomimetic traction control algorithm operates on the same correlated input signals that a human expert driver would in order to maximize traction. A gradient ascent approach is at the heart of the proposed anthropomimetic control algorithm, and a real-time implementation is described using linear operator techniques, even though the tire-ground interface is highly non-linear. Performance of the proposed anthropomimetic traction control algorithm is demonstrated using both a longitudinal traction case study and a combined mode traction case study, in which longitudinal and lateral accelerations are maximized simultaneously. The approach presented in this research should be considered as a first step in the development of a truly anthropomimetic solution, where an advanced control algorithm has been designed to be responsive to the same limited input signals that a human expert would rely on, with the objective of maximizing traction. This work establishes the foundation for a general framework for an anthropomimetic control algorithm that is capable of learning and adapting to an uncertain, time varying environment. The algorithms developed in this work are well suited for efficient real time control in ground vehicles in a variety of applications from a driver assist technology to fully autonomous applications.
- The Application of Doppler LIDAR Technology for Rail Inspection and Track Geometry AssessmentTaheriandani, Masood (Virginia Tech, 2016-05-17)The ability of a Doppler LIDAR (Light Detection and Ranging) system to measure the speed of a moving rail vehicle in a non-contacting manner is extended to capture the lateral and vertical irregularities of the track itself and to evaluate the rail track quality. Using two pairs of lenses to capture speed signals from both rails individually, the track speed, curvature, and lateral and vertical geometry variations on each side are determined. LIDAR lenses are installed with a slight forward angle to generate velocity signals that contain two components: 1) the left and right track speeds, and 2) any lateral and/or vertical speed caused by track motion and/or spatial irregularities. The LIDAR system collects and outputs the track information in time domain. Separating each speed component (forward, vertical, and lateral) is possible due to the inherent separation of each phenomenon with respect to its spatial/temporal frequencies and related bandwidths. For the measurements to be beneficial in practice, the LIDAR data must be spatially located along the track. A data-mapping algorithm is then simultaneously developed to spatially match the LIDAR track geometry measurements with reference spatial data, accurately locating the measurements along the track and eliminating the need for a Global Positioning System (GPS). A laboratory-grade LIDAR system with four Doppler channels, developed at the Railway Technologies Laboratory (RTL) of Virginia Tech, is body-mounted and tested onboard a geometry measurement railcar. The test results indicate a close match between the LIDAR measurements and those made with existing sensors onboard the railcar. The field-testing conducted during this study indicates that LIDAR sensors could provide a reliable, non-contact track-monitoring instrument for field use, in various weather and track conditions, potentially in a semi-autonomous or autonomous manner. A length-based track quality index (TQI) is established to quantify the track geometry condition based on the geometry data collected by the LIDAR sensors. A phenomenological rail deterioration model is developed to predict the future degradation of geometry quality over the short track segments. The introduced LIDAR's TQI is considered as the condition-parameter, and an internal variable is assumed to govern the rail geometry degradation through a deterioration rule. The method includes the historical data, current track conditions collected by the LIDAR system, and traffic data to calculate the track deterioration condition and identify the geometry defects. In addition to rail geometry inspection, a LIDAR system can potentially be used to monitor the rail surface structure and integrity. This is possible due to the fact that the Doppler shift imposed on the laser radiation reflected from a moving surface has the Doppler bandwidth broadened in proportion to the height and width of the surface features. Two LIDAR-based rail surface measures are introduced based on LIDAR measurements to identify different rail surface conditions and materials.
- The Application of Laser Technology for Railroad Top of Rail (TOR) Friction Modifier Detection and MeasurementsSingh, Dejah Leandra (Virginia Tech, 2018-05-16)The examination of the application and accuracy of optical sensors for the purpose of determining rail lubricity of top-of-rail friction modifier is investigated in this research. A literature review of optical sensors as they relate to detecting thin layers is presented, as well as a literature review of the significant aspect of surface roughness on optical signature. Both commercially available optical sensors and optical devices, such as independent lasers and detectors, are examined in a comprehensive parametric study to determine the most suitable configuration for a prototype with adequate third-body detection. A prototype is constructed considering parameters such as sunlight contamination, vibrations, and angle of detection. The prototype is evaluated in a series of laboratory tests with known lubricity conditions for its accuracy of measurements and susceptibility to environmental conditions, in preparation for field testing. Upon field testing the prototype, the data indicates that it is capable of providing subjective measurements that can help with determining whether a rail is highly lubricated or unlubricated, or it is moderately lubricated. It is anticipated that the device could be used to provide a rail lubricity index. The investigation of the optical response of a rail in various conditions, including top-of-rail friction modifier presence and underlying surface roughness, reveals the behavior of friction modifying material on rail/wheel interactions. It is determined that surface roughness is imperative for distinguishing between scattering due to surface condition and scattering due to third-body layers. Additionally it is revealed that friction modifying materials become entrapped within the surface roughness of the rail, effectively causing a "seasoning" effect instead of a simple third body layer. This provides some explanation on the inadequacy of determining lubricity conditions using contacting methods since they cannot detect the entrapped material that are revealed only when the top of rail undergoes a micro deformation due to a passing wheel. Furthermore, the fluorescent signature of flange grease can be utilized to detect any flange grease contamination on top of rail. The results of the study indicate that it is possible to have practical optical sensors for top-of-rail third body layer detection and any contamination that may exist, initially through spot checking the rail and eventually through in-motion surveying.
- Application of Optical Detection Methods for Top-of-Rail (TOR) Lubricity Evaluation on a Moving Platform for Revenue Service TrackMast, Timothy Edward (Virginia Tech, 2020-04-17)This research serves to evaluate the ability of optical detection techniques to ascertain the lubricity of revenue service track from a moving platform for railroad applications. A literature review is presented that covers the rail vehicle dynamics that drive the need of Top-of-Rail lubrication and directly affect the manner in which the Top-of-Rail Friction Modifiers (TORFM) and flange grease both spread down rail and eventually wear away. This literature review also highlights previous research in the field of rail lubrication and the benefits that rail lubricants, specifically TORFM, provide for the railroads. Finally, the literature review covers the governing optical principals inherent to the synchronous spot radiometer that has been developed for use in the research as a gloss ratio instrument and also addresses the drawbacks and challenges inherent to applying this type of instrument in the railroad industry. The research then overviews previous rail lubricity sensors developed by the Railway Technologies Laboratory (RTL) at Virginia Tech and the lessons learned from their application. The preceding field testing conducting with a modified second generation rail lubricity sensor and a rail push car is briefly summarized with emphasis on the drawbacks and issues that were used to develop the third generation sensor used for this research. The development of the third generation sensor is covered, including the issues that it attempts to solve from its predecessor and the governing optical principals that govern the operation of the sensor. The laboratory evaluations conducting to commission the sensor are also covered in preparation for deploying the new third generation sensor in medium speed, medium distance revenue service testing. This includes a shakedown run on a siding in Riverside, VA prior to conducting mainline in-service testing. Finally, this research thesis covers the in-service testing on revenue track conducted with the new third generation rail lubricity sensor and the accompanying remote-controlled (RC) rail cart. The two components, when combined, create a Lubricity Assessment System which is capable of being operated at speeds upwards of 10 mph remotely from a follow hy-rail truck. The data collected from this field test is analyzed for the lubricity assessments that are able to be drawn from this initial phase of field service testing. The conclusions from this testing affirm the ability of optical methods to determine and evaluate Top-of-Rail (TOR) lubricity from a moving platform. Specifically, the new sensor is able to identify several local phenomena that demonstrate the high potential for errant evaluation of rail lubricity evaluation from spot check based methods that are solved by evaluating the track in a continuous, moving fashion. Based on the continuous moving data collected for this test, several new signal traits such as the spatial frequency (wavenumber) associated with the passing freight cart wheels in the lubricity signal and the phantom applicator effect of transient lubricity conditions at the entrances and exits of curves can be detected and investigated. The success of this research indicates the continued evaluation of lubricity signals from a moving platform is warranted and suggests the potential for introducing one of these systems to various track metrology cars deployed throughout the United States railroads.