Browsing by Author "Srinivasan, Raghavan"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Assessment of the Impact of Climate Change on Streamflow and Sediment in the Nagavali and Vamsadhara Watersheds in IndiaNagireddy, Nageswara Reddy; Keesara, Venkata Reddy; Venkata Rao, Gundapuneni; Sridhar, Venkataramana; Srinivasan, Raghavan (MDPI, 2023-06-26)Climate-induced changes in precipitation and temperature can have a profound impact on watershed hydrological regimes, ultimately affecting agricultural yields and the quantity and quality of surface water systems. In India, the majority of the watersheds are facing water quality and quantity issues due to changes in the precipitation and temperature, which requires assessment and adaptive measures. This study seeks to evaluate the effects of climate change on the water quality and quantity at a regional scale in the Nagavali and Vamsadhara watersheds of eastern India. The impact rainfall variations in the study watersheds were modeled using the Soil and Water Assessment Tool (SWAT) with bias-corrected, statistically downscaled models from Coupled Model Intercomparison Project-6 (CMIP-6) data for historical (1975–2014), near future (2022–2060), and far future (2061–2100) timeframes using three Shared Socioeconomic Pathways (SSP) scenarios. The range of projected changes in percentage of mean annual precipitation and mean temperature varies from 0 to 41.7% and 0.7 °C to 2.7 °C in the future climate, which indicates a warmer and wetter climate in the Nagavali and Vamsadhara watersheds. Under SSP245, the average monthly changes in precipitation range from a decrease of 4.6% to an increase of 25.5%, while the corresponding changes in streamflow and sediment yield range from −11.2% to 41.2% and −15.6% to 44.9%, respectively. Similarly, under SSP370, the average monthly change in precipitation ranges from −3.6% to 36.4%, while the corresponding changes in streamflow and sediment yield range from −21.53% to 77.71% and −28.6% to 129.8%. Under SSP585, the average monthly change in precipitation ranges from −2.5% to 60.5%, while the corresponding changes in streamflow and sediment yield range from −15.8% to 134.4% and −21% to 166.5%. In the Nagavali and Vamsadhara watersheds, historical simulations indicate that 2438 and 5120 sq. km of basin areas, respectively, were subjected to high soil erosion. In contrast, under the far future Cold-Wet SSP585 scenario, 7468 and 9426 sq. km of basin areas in the Nagavali and Vamsadhara watersheds, respectively, are projected to experience high soil erosion. These results indicate that increased rainfall in the future (compared to the present) will lead to higher streamflow and sediment yield in both watersheds. This could have negative impacts on soil properties, agricultural lands, and reservoir capacity. Therefore, it is important to implement soil and water management practices in these river basins to reduce sediment loadings and mitigate these negative impacts.
- Climate Change Impact on Water Resources of Tank Cascade Systems in the Godavari Sub-Basin, IndiaRamabrahmam, Koppuravuri; Keesara, Venkata Reddy; Srinivasan, Raghavan; Pratap, Deva; Sridhar, Venkataramana (Springer, 2023-05-01)The availability of water at the regional and river basin scales in the future will be significantly impacted by climate change. Effective water management in the sub-basin is essential for ensuring long-term sustainability in the face of changing climatic conditions. The Maner River basin is a significant contributor to the Godavari River, and agriculture serves as the primary source of income for the majority of individuals residing in the subbasin. Nearly 50–65% of irrigational fields in the Maner basin are cultivated using local Tank Cascade Systems (TCS) and reservoirs that are managed by monsoon precipitation. The regional level climate change impact on the water resources of these tank cascade systems is important for sustainable management of water resources. In this study, The NEX-GDDP RCM models of CCSM4, MPI-ESM-LR and MIROC-ESM-CHEM were utilized to examine climate patterns during historical and future periods under RCP 4.5 and RCP 8.5 scenarios. The Maner sub-basin and KTCS (Katakshapur Tank Cascade System) were modeled using the SWAT hydrological model to simulate runoff and water availability. The average monsoon (July-October) streamflow increase in the Maner basin during the near, mid, and far futures is projected to be 47%, 66%, and 114% under the RCP 4.5 scenario, and 53%, 72%, and 69% under the RCP 8.5 scenario, respectively. Excess flow may overflow from Ramchandrapur, Mallampalli, and Dharmaraopalli tanks to the downstream Katakshapur tank since it can accommodate the up to 18.91 Mm3. To enhance water management in response to climate change, one potential adaptation strategy is to utilize the surplus inflow to refill downstream artificial ponds, which can aid in the replenishment of groundwater and the provision of water supply to tail end tanks.
- Evaluation of NCEP-GFS-based Rainfall forecasts over the Nagavali and Vamsadhara basins in IndiaRao, G. Venkata; Reddy, Keesara Venkata; Sridhar, Venkataramana; Srinivasan, Raghavan; Umamahesh, N. V.; Pratap, Deva (Elsevier, 2022-11-01)Rainfall forecasting and its spatio-temporal variability is important for many hydrological applications. It is critical to understand the uncertainty and verify the quality of rainfall forecasts provided by Numerical Weather Prediction (NWP) models. In the present study, the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) model performance is evaluated for day-1 to day-5 forecast with a threshold of 1 mm/day in the Nagavali and Vamsadhara river basins, India. From the results, the model predicted the rainfall with a correlation coefficient of >0.3 and probability of detection >0.6 for day-1 and day-3 forecasts. The bias in rainfall prediction shifted from overestimation to underestimation by 30% as forecast lead time increased. The total mean error is decomposed into hit, false, and missed bias. The main sources of total mean error are hit bias and false bias. However, missed bias influenced total mean error as lead time increased. Bias correction is applied for the rainfall events with a rainfall intensity >12 mm/day. RMSE improved by >18% for day-1 forecast in both the Nagavali and Vamsadhara basins, and the improvement ranged between 3% to 9% for other days. In the Nagavali basin, BIAS and ME improved and ranged from 44% to 65% for day-1 to day-5 forecast, whereas in the Vamsadhara basin, it ranged from 65% to 93%. Our findings are useful for early warning dissemination during the flood events, resource mobilization to protect communities, and sustainable water resources planning and management.
- Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT ModelRamabrahmam, Koppuravuri; Keesara, Venkata Reddy; Srinivasan, Raghavan; Pratap, Deva; Sridhar, Venkataramana (MDPI, 2021-11-27)In the semi-arid regions of South Asia, tank systems are the major source of irrigation. In India, the Telangana state government has initiated the Mission Kakatiya program to rejuvenate irrigation tank systems. Understanding the hydrological processes that supply water to these systems is critical to the success of these types of programs in India. The current study attempted to comprehend the hydrological processes and flow routing in the Salivagu watershed tank cascade system in Telangana. There are a lot of ungauged tank cascade systems in this region. Soil Water Assessment Tool (SWAT), a physically-based model, was used to simulate flow patterns in the Salivagu watershed with and without tank systems. The geospatially extracted area and volume were used for this study provided by WBIS-Bhuvan-NRSC. Additionally, the Katakshapur Tank Cascade System (KTCS) was chosen to analyze the water availability in each tank using the water balance approach. The Salivagu watershed flow simulation without tanks overestimated streamflow. The volume difference in flow between with and without tank was 606 Mm3, 615.9 Mm3, and 1011 Mm3 in 2017, 2018, and 2019, respectively. The SWAT simulated volumes of the Ramchandrapur and Dharmaraopalle tanks in KTCS were merely satisfied because the tank size was less than 0.7 km2 and the storage capacity was up to 1 Mm3. Due to tank sizes more than 0.8 km2 and capacities greater than 2 Mm3, the Mallampalli and Katakshapur tank simulation findings were in good agreement with WBIS-Bhuvan-NRSC. This research advances our understanding of the hydrological processes in ungauged cascading tank systems in tropical semi-arid regions.
- Progress report: Agroforestry and sustainable vegetable production in Southeast Asian watershedsReyes, Manuel R. (2008)Work on vegetable-agroforestry compatibility is advancing rapidly with new findings that
- Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern IndiaRao, G. Venkata; Reddy, K. Venkata; Srinivasan, Raghavan; Sridhar, Venkataramana; Umamahesh, N.V.; Pratap, Deva (Elsevier, 2020-05-29)Understanding the spatio-temporal distribution of rainfall characteristics has a major role in assessing the availability of water resources over a catchment. Therefore, it is necessary to understand the changes in rainfall characteristics using gridded precipitation data and robust statistical analysis for making decisions. In this study, the trends in rainfall and rainfall extremes over the Nagavali and Vamsadhara river basins are studied at three time steps (long-term-1901-2018, pre-1950, and post-1950) with four different Mann-Kendall (MK) tests using daily gridded rainfall data of 118 years (1901–2018). The spatial patterns of the trends are evaluated with the kriging interpolation method. Magnitude in rainfall and rainfall extremes (CDD, CWD, PRCPTOT, R10MM, R20MM, R40MM, R95PTOT, RX1DAY, and RX5DAY) are analyzed using the Sen’s slope method. Except in the monsoon season, a decreasing trend is observed in all the rainfall extremes in post-1950 compared to pre-1950 period. Whereas, in the monsoon an increasing trend is observed for the extremes in post-1950 period. Overall period (i.e, 1901–2018) an increasing trend is observed for rainfall and rainfall extremes in the pre-monsoon (March–May), monsoon (June–Sep) seasons and a decreasing trend in the winter season (Dec–Feb) for both the basins. No obvious trends are evident in the post-monsoon season (Oct–Nov). At the annual scale, rainfall and rainfall extremes exhibited an increasing trend. Overall, the Nagavali basin experienced more extreme rainfall events indicating the higher vulnerability of floods while the middle and lower portions of the Vamsadhara basin shown increase in extremes. When linked with hydrological analysis, insights gained from this study are useful for flood vulnerability mapping and risk assessment for both the basins.
- Streamflow and Sediment Yield Analysis of Two Medium-Sized East-Flowing River Basins of IndiaNagireddy, Nageswara Reddy; Keesara, Venkata Reddy; Sridhar, Venkataramana; Srinivasan, Raghavan (MDPI, 2022-09-21)With increased demand for water and soil in this Anthropocene era, it is necessary to understand the water balance components and critical source areas of land degradation that lead to soil erosion in agricultural dominant river basins. Two medium-sized east-flowing rivers in India, namely Nagavali and Vamsadhara, play a significant role in supporting water supply and agriculture demands in parts of the Odisha districts of Kalahandi, Koraput and Rayagada, as well as the Andhra Pradesh districts of Srikakulam and Vizianagaram. Floods are more likely in these basins as a result of cyclones and low-pressure depressions in the Bay of Bengal. The water balance components and sediment yield of the Nagavali and Vamsadhara river basins were assessed using a semi-distributed soil and water assessment tool (SWAT) model in this study. The calibrated model performance revealed a high degree of consistency between observed and predicted monthly streamflow and sediment load. The water balance analysis of Nagavali and Vamsadhara river basins showed the evapotranspiration accounted for 63% of the average annual rainfall. SWAT simulated evapotranspiration showed a correlation of 0.78 with FLDAS data. The calibrated SWAT model showed that 26.5% and 49% of watershed area falling under high soil erosion class over Nagavali and Vamsadhara river basins, respectively. These sub watersheds require immediate attention to management practices to improve the soil and water conservation measures.