Browsing by Author "Stallings, Jonathan W."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- General Weighted Optimality of Designed ExperimentsStallings, Jonathan W. (Virginia Tech, 2014-04-22)Design problems involve finding optimal plans that minimize cost and maximize information about the effects of changing experimental variables on some response. Information is typically measured through statistically meaningful functions, or criteria, of a design's corresponding information matrix. The most common criteria implicitly assume equal interest in all effects and certain forms of information matrices tend to optimize them. However, these criteria can be poor assessments of a design when there is unequal interest in the experimental effects. Morgan and Wang (2010) addressed this potential pitfall by developing a concise weighting system based on quadratic forms of a diagonal matrix W that allows a researcher to specify relative importance of information for any effects. They were then able to generate a broad class of weighted optimality criteria that evaluate a design's ability to maximize the weighted information, ultimately targeting those designs that efficiently estimate effects assigned larger weight. This dissertation considers a much broader class of potential weighting systems, and hence weighted criteria, by allowing W to be any symmetric, positive definite matrix. Assuming the response and experimental effects may be expressed as a general linear model, we provide a survey of the standard approach to optimal designs based on real-valued, convex functions of information matrices. Motivated by this approach, we introduce fundamental definitions and preliminary results underlying the theory of general weighted optimality. A class of weight matrices is established that allows an experimenter to directly assign weights to a set of estimable functions and we show how optimality of transformed models may be placed under a weighted optimality context. Straightforward modifications to SAS PROC OPTEX are shown to provide an algorithmic search procedure for weighted optimal designs, including A-optimal incomplete block designs. Finally, a general theory is given for design optimization when only a subset of all estimable functions is assumed to be in the model. We use this to develop a weighted criterion to search for A-optimal completely randomized designs for baseline factorial effects assuming all high-order interactions are negligible.