Browsing by Author "Su, Jianmin"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- A cell–ECM mechanism for connecting the ipsilateral eye to the brainSu, Jianmin; Sabbagh, Ubadah; Liang, Yanping; Olejníková, Lucie; Dixon, Karen G.; Russell, Ashley L.; Chen, Jiang; Pan, Yuchin Albert; Triplett, Jason W.; Fox, Michael A. (National Academy of Sciences, 2021-10-15)Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
- Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulbAmos, Chase; Fox, Michael A.; Su, Jianmin (Frontiers, 2023-04)In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.
- Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortexSu, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rchael; Fox, Michael A. (Rockefeller University Press, 2016-03-14)Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses.
- Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infectionCarrillo, Gabriela L.; Su, Jianmin; Cawley, Mikel L.; Wei, Derek; Gill, Simran K.; Blader, Ira J.; Fox, Michael A. (Wiley, 2023-01-23)The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.
- Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projectionsSu, Jianmin; Klemm, Michael A.; Josephson, Anne M.; Fox, Michael A. (BioMed Central, 2013-06-13)Background: Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting. Results: To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr(-/-); lrp8(-/-) double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr(-/-); lrp8(-/-) mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr(-/-); lrp8(-/-) mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr(-/-); lrp8(-/-) mutants. Conclusions: In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
- F-spondin Is Essential for Maintaining Circadian RhythmsCarrillo, Gabriela Lizana; Su, Jianmin; Monavarfeshani, Aboozar; Fox, Michael A. (Frontiers, 2018-02-08)The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms.
- Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleusSingh, Rishabh; Su, Jianmin; Brooks, Justin M.; Terauchi, Akiko; Umemori, Hisashi; Fox, Michael A. (Frontiers, 2012-01-10)At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses.
- LRRTM1 underlies synaptic convergence in visual thalamusMonavarfeshani, Aboozar; Stanton, Gail; Van Name, Jonathan; Su, Kaiwen; Mills, William A. III; Swilling, Kenya; Kerr, Alicia; Huebschman, Natalie A.; Su, Jianmin; Fox, Michael A. (eLife, 2018-02-09)It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.
- A Molecular Mechanism Regulating the Timing of Corticogeniculate InnervationBrooks, Justin M.; Su, Jianmin; Levy, Carl; Wang, Jessica S.; Seabrook, Tania A.; Guido, William (Elsevier, 2013-11-14)Neural circuit formation demands precise timing of innervation by different classes of axons. However, the mechanisms underlying such activity remain largely unknown. In the dorsal lateral geniculate nucleus (dLGN), axons from the retina and visual cortex innervate thalamic relay neurons in a highly coordinated manner, with those from the cortex arriving well after those from retina. The differential timing of retino- and corticogeniculate innervation is not a coincidence but is orchestrated by retinal inputs. Here, we identified a chondroitin sulfate proteoglycan (CSPG) that regulates the timing of corticogeniculate innervation. Aggrecan, a repulsive CSPG, is enriched in neonatal dLGN and inhibits cortical axons from prematurely entering the dLGN. Postnatal loss of aggrecan from dLGN coincides with upregulation of aggrecanase expression in the dLGN and corticogeniculate innervation and, it is important to note, is regulated by retinal inputs. Taken together, these studies reveal a molecular mechanism through which one class of axons coordinates the temporal targeting of another class of axons.
- Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse ThalamusHammer, Sarah; Monavarfeshani, Aboozar; Lemon, Tyler; Su, Jianmin; Fox, Michael A. (Cell, 2015)Activity-dependent refinement of neural circuits is a fundamental principle of neural development. This process has been well studied at retinogeniculate synapses—synapses that form between retinal ganglion cells (RGCs) and relay cells within the dorsal lateral geniculate nucleus. Physiological studies suggest that shortly after birth, inputs from _20 RGCs converge onto relay cells. Subsequently, all but just one to two of these inputs are eliminated. Despite widespread acceptance, this notion is at odds with ultrastructural studies showing numerous retinal terminals clustering onto relay cell dendrites in the adult. Here, we explored this discrepancy using brainbow AAVs and serial block face scanning electron microscopy (SBFSEM). Results with both approaches demonstrate that terminals from numerous RGCs cluster onto relay cell dendrites, challenging the notion that only one to two RGCs innervate each relay cell. These findings force us to re-evaluate our understanding of subcortical visual circuitry.
- Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamusHammer, Sarah; Carrillo, Gabriela Lizana; Govindaiah, Gubbi; Monavarfeshani, Aboozar; Bircher, Joseph S.; Su, Jianmin; Guido, William; Fox, Michael A. (BMC, 2014)Background: Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. Results: Immunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as synapses initially formed, but rather developed as retinogeniculate circuits mature. Conclusions: Taken together, these results reveal nuclei-specific differences in nerve terminal composition, distribution, and morphology in mouse visual thalamus. These results raise intriguing questions about the different functions of these nuclei in processing light-derived information, as well as differences in the mechanisms that underlie their unique, nuclei-specific development.
- Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse BrainMonavarfeshani, Aboozar; Kill, Courtney N.; Sabbagh, Ubadah; Su, Jianmin; Fox, Michael A. (Frontiers, 2017-08-30)Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain development and function.
- Retinal inputs signal astrocytes to recruit interneurons into visual thalamusSu, Jianmin; Charalambakis, Naomi E.; Sabbagh, Ubadah; Somaiya, Rachana D.; Monavarfeshani, Aboozar; Guido, William; Fox, Michael A. (2020-02-04)Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
- Target-Derived Matricryptins Organize Cerebellar Synapse Formation through _3_1 IntegrinsSu, Jianmin; Stenbjorn, Renee S.; Gorse, Karen; Su, Kaiwen; Hauser, Kurt F.; Ricard-Blum, Sylvie; Pihlajaniemi, Taina; Fox, Michael A. (Cell, 2012)Trans-synaptic organizing cues must be passed between synaptic partners for synapses to properly form. Much of our understanding of this process stems from studies at the neuromuscular junction, where target-derived growth factors, extracellular matrix (ECM) molecules, and matricryptins (proteolytically released fragments of ECM molecules) are all essential for the formation and maintenance of motor nerve terminals. While growth factors and ECM molecules also contribute to the formation of brain synapses, it remains unclear whether synaptic roles exist for matricryptins in the mammalian brain. We report that collagen XVIII and its matricryptin endostatin are generated by cerebellar Purkinje cells and are necessary for the organization of climbing fiber terminals in these neurons. Moreover, endostatin is sufficient to induce climbing fiber terminal formation in vitro by binding and signaling through _3_1 integrins. Taken together, these studies reveal roles for both matricryptins and integrins in the organization of brain synapses.
- Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous SystemBrooks, Justin M.; Carrillo, Gabriela Lizana; Su, Jianmin; Lindsay, David S.; Fox, Michael A.; Blader, Ira J. (American Society for Microbiology, 2015-10-27)During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling.