Browsing by Author "Su, Wansheng"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Calibration of time domain network analyzersSu, Wansheng (Virginia Tech, 1992)A calibration technique for time domain reflectometry and transmission (TDR and TDT) measurement system as applied to network analysis is presented. The calibration corrects for the errors caused by the response of the measurement system. A complete physically-based model has been established for the system. A set of calculable standards has been developed to satisfy the time domain requirements for calibration. The calibration technique was applied to determining the model parameters of a commercial TDR and TDT system. The errors of modeling and de-embedding are analyzed. The calibration enhanced the system bandwidth from 8 GHz to about 20 GHz. Experimental verification is given to demonstrate the validity and accuracy of the calibration technique.
- Characterization and modeling of dry etch processes for titanium nitride and titanium films in Cl₂/N₂ and BCl₃ plasmasMuthukrishnan, N. Moorthy (Virginia Tech, 1996-11-04)In the past few years, the demands for high speed semiconductor integrated circuits have warranted new techniques in their fabrication process which will meet the ever-shrinking dimensions. The gaseous plasma assisted etching is one of these revolutionary processes. However, the plasma and the etch process are very complex in nature. It has been very difficult to understand various species present in the plasma and their role in the etch reaction. In addition, the submicron geometries also require interconnect materials which will satisfy the necessary properties such as thermal stability and low electrical resistance. Titanium (Ti) and titanium nitride (TiN) are widely used as barriers between aluminum (Al) and silicon (Si) to prevent the destructive intermixing of these two materials. The process of patterning of the interconnect containing Ti and TiN along with Al has been a challenge to the semiconductor process engineers. Therefore, complete characterization of the plasma etch process of Ti and TiN films and development of mathematical models to represent the responses such as the etch rate and uniformity is necessary for a good understanding of the etching process. A robust and well controlled metal etch process usually results in good die yield per wafer and hence can translate into higher profits for the semiconductor manufacturer. The objective of this dissertation is to characterize the plasma etch processes of Ti and TiN films in chlorine containing plasmas such as BCl₃ and Cl₂/N₂ and to develop mathematical models for the etch processes using statistical experimental design and analysis technique known as Response Surface Methodology (RSM). In this work, classical experiments are conducted on the plasma etch process of Ti and TiN films by varying the process parameters, such as gas flow, radio frequency (RF) power, reaction pressure, and temperature, one parameter at a time, while maintaining the other parameters constant. The variation in the etch rate with the change in the process parameter of the film is studied and the results were explained in terms of the concepts of plasma. These experiments, while providing very good understanding of the main effects of the parameters, yield little or no information on the higher order effects or interaction between the process parameters. Therefore, modern experimental design and analysis techniques using computerized statistical methods need to be employed for developing mathematical models for these complex plasma etch processes. The second part of this dissertation concentrates on the Design and Analysis of Experiments using Response Surface Methodology (RSM) and development of models for the etch rate and the etch uniformity of the Ti and TiN films in chlorine-containing plasmas such as Cl₂/N₂ and Cl₂/N₂/BCl₃. A complete characterization of the plasma etch process of Ti and TiN films is achieved with the RSM technique and a well fitting and statistically significant models have been developed for the process responses, such as the etch rate and the etch uniformity. These models also provide a means for quantitative comparison of main effects, which are also known as first order effects, second order effects and two factor interactions. The models, thus developed, can be effectively used for an etch process optimization, prediction of the responses without actually conducting the experiments, and the determination of process window. This dissertation work has achieved a finite study of the plasma etch process of Ti and TiN films. There is tremendous potential and scope for further research in this area, limited only by the available resources for wafer processing. A few of the possibilities for further research is discussed in the next few sentences. The optimized process derived from the RSM technique needs to be implemented in the actual production process of the semiconductor ICs and its effects on the wafer topography, etch residue and the resulting die yield have to be studied. More research studies are needed to examine the effect of process parameters such as temperature, the size and shape of the etch chamber, the quality of the film being etched, among other parameters. It is worth emphasizing in this respect that this dissertation marks beginning of research work into the ever-increasing complexities of gas plasma.
- Optimization Study of the Stripline Resonator Technique for Dielectric CharacterizationEl-Bakly, Ahmed Mostafa (Virginia Tech, 1999-02-12)To properly design the microwave components such as transmission lines, filters, capacitors, inductors, and many others, it is important to know the characteristics of the construction materials at microwave frequencies. One of the most reliable techniques in material characterization at microwave frequencies is the coplaner coupled stripline resonator technique. This technique is an enhancement to the classical stripline resonator technique. In this technique, the measured resonance frequency and quality factor of the resonator are used to determine the complex permitivity. One of the main problems in this technique is the proper modeling of the coupling gaps. In this dissertation we will introduce an accurate model of the coupling gap, which will shows that the capacitive behavior of the gap is not pure capacitive as known before, but it turns into more complex one at higher frequencies depending on the dimensions of the gap primarily. The second main problem is the limitation in the frequency range for accurate measurements. At higher frequencies, the coupling reaches its peak value for a given stripline resulting in excessive loading to the resonator and thus a lowered Q value. In this frequency range, measurement of the dielectric properties looses its accuracy because the lowered Q values which means inaccuracies in determining the resonant frequencies as well as great error in determining the Qc and Qd terms. In this dissertation, attempts to remedy this problem by introducing two different approaches to get an improved design for the coplaner coupled stripline resonator are presented. The first approach to optimize the design of the coplaner coupled stripline resonator is based on optimizing the dimensions of the coplaner coupled stripline resonator three sections (coplaner, transition region, and the center stripline). In the second approach, a reactive stub (via) is introduced in the coupling gap between the coplaner line and the center stripline. The added stub is designed to improve the Q values of the structure resonances. Simulations of different designs of the coplaner coupled stripline resonator using different stub dimensions are presented. Advantages and disadvantages of these designs as well as the solution to their resonance frequency shift problems are discussed as well.
- Tfdtlm: a New Computationally Efficient Frequency Domain Tlm Based on Transient Analysis TechniquesSalama, Iman Mohamed (Virginia Tech, 1997-09-11)The TLM was initially formulated and developed in the time domain. One key issue in a time domain analysis approach is the computational efficiency, where a single impulsive excitation could yield information over a wide frequency range. Also, it may be more natural and realistic to model non linear and frequency dispersive properties in the time domain rather than in the frequency domain. However, in some circumstances, frequency domain analysis may be more appealing. This might be due to the fact that the traditional teaching of electromagnetics emphasizes frequency domain concepts as frequency dispersive constitutive parameters, complex frequency dependent impedances and reflection coefficients. It might be even easier and more direct to be able to model these parameters in frequency domain rather than trying to synthesize an equivalent time domain model. The only limitation of frequency domain analysis, is that the analysis has to be repeated at every frequency point in the frequency range of interest. In this work, a new frequency domain TLM (FDTLM) approach is introduced which combines the superior features of both the time domain and the frequency domain TLM. The approach is based on a steady state analysis in the frequency domain using transient analysis techniques and hence is referred to as TFDTLM. In this approach, the link lines impedances are derived in the frequency domain and are chosen to model the frequency dispersive material parameters. The impedances and propagation constants are allowed to be complex and frequency dependent. Consequently, the TFDTLM can provide more accurate modeling for wave propagation in a frequency dispersive medium. The approach was inspired by the concept of bounce diagram in the time domain and the equivalent frequency domain bounce diagram. To make the TFDTLM approach computationally efficient as compared to other frequency domain TLM approaches, it was critical to maintain some relationship between the mesh response at one frequency point and any other frequency point. The goal was to be able to extract all the frequency domain information in a wide frequency range by performing only one simulation. To achieve this, the transitions between two adjacent cell in all media expressed by (exp(-gamma*L)) have to be expressed in terms of the propagation factor of some reference medium chosen to be the medium with the least propagation delay. This was done with the aid of a digital filter approximation that can be implemented iteratively inside the TLM mesh. The filter can be thought of as some type of compensation equivalent to the stubs in a time domain TLM, yet more accurate and more general. An important advantage of the TFDTLM is that it can easily be interfaced with existing time domain TLM schemes as well as absorbing boundary conditions originally developed for time domain TLM with the slightest modifications. The TFDTLM is implemented a three dimensional mesh and the superior performance of the new approach in modeling lossy inhomogeneous media is demonstrated. The new approach in addition to being computationally efficient as compared to other frequency domain TLM methods, has proven to have superior dispersion behavior in modeling lossy inhomogeneous media as compared to time domain TLM .