Browsing by Author "Susanti, Dwi"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic ArchaeaYu, Hang; Susanti, Dwi; McGlynn, Shawn E.; Skennerton, Connor T.; Chourey, Karuna; Iyer, Ramsunder; Scheller, Silvan; Tavormina, Patricia L.; Hettich, Robert L.; Mukhopadhyay, Biswarup; Orphan, Victoria J. (Frontiers, 2018-12-03)Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F-420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
- Complete Genome Sequence of Bordetella pertussis Pelita III, the Production Strain for an Indonesian Whole-Cell Pertussis VaccineEfendi, Yusuf Sofyan; Susanti, Dwi; Tritama, Erman; Pasier, Michelle; Putri, Gilang Nadia Niwan; Raharso, Sugeng; Iskandar; Aditiawati, Pingkan; Giri-Rachman, Ernawati; Mukhopadhyay, Biswarup; Purwantini, Endang (2017-04)PT Bio Farma, the sole World Health Organization-approved Indonesian vaccine producer, manufactures a whole-cell whooping cough vaccine (wP) that, as part of a pentavalent diphtheria-tetanus-pertussis/hepatitis B/Haemophilus influenzae b (DTP/HB/Hib) vaccine, is used in Indonesia and many other countries. We report here the whole-genome sequence for Bordetella pertussis Pelita III, PT Bio Farma's wP production strain.
- Evolving understanding of rumen methanogen ecophysiologyKhairunisa, Bela Haifa; Heryakusuma, Christian; Ike, Kelechi; Mukhopadhyay, Biswarup; Susanti, Dwi (Frontiers, 2023-11-06)Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
- A Genetic System for Methanocaldococcus jannaschii: An Evolutionary Deeply Rooted Hyperthermophilic MethanarchaeonSusanti, Dwi; Frazier, Mary C.; Mukhopadhyay, Biswarup (Frontiers, 2019-07-03)Phylogenetically deeply rooted methanogens belonging to the genus of Methanocaldococcus living in deep-sea hydrothermal vents derive energy exclusively from hydrogenotrophic methanogenesis, one of the oldest respiratory metabolisms on Earth. These hyperthermophilic, autotrophic archaea synthesize their biomolecules from inorganic substrates and perform high temperature biocatalysis producing methane, a valuable fuel and potent greenhouse gas. The information processing and stress response systems of archaea are highly homologous to those of the eukaryotes. For this broad relevance, Methanocaldococcus jannaschii, the first hyperthermophilic chemolithotrophic organism that was isolated from a deep-sea hydrothermal vent, was also the first archaeon and third organism for which the whole genome sequence was determined. The research that followed uncovered numerous novel information in multiple fields, including those described above. M. jannaschii was found to carry ancient redox control systems, precursors of dissimilatory sulfate reduction enzymes, and a eukaryotic-like protein translocation system. It provided a platform for structural genomics and tools for incorporating unnatural amino acids into proteins. However, the assignments of in vivo relevance to these findings or interrogations of unknown aspects of M. jannaschii through genetic manipulations remained out of reach, as the organism was genetically intractable. This report presents tools and methods that remove this block. It is now possible to knockout or modify a gene in M. jannaschii and genetically fuse a gene with an affinity tag sequence, thereby allowing facile isolation of a protein with M. jannaschii-specific attributes. These tools have helped to genetically validate the role of a novel coenzyme F420-dependent sulfite reductase in conferring resistance to sulfite in M. jannaschii and to demonstrate that the organism possesses a deazaflavin-dependent system for neutralizing oxygen.
- Genomic characterization of methanomicrobiales reveals three classes of methanogensAnderson, Iain J.; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidi, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land,Miriam; Lucas, Susan; Mukhopadhyay, Biswariup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos (Public Library of Science, 2009-06-04)Background: Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings: In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance: Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).
- An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate ReductionSusanti, Dwi; Mukhopadhyay, Biswarup (Public Library of Science, 2012-09-21)Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit.
- Permanent Draft Genome Sequence of Desulfurococcus amylolyticus Strain Z-533(T), a Peptide and Starch Degrader Isolated from Thermal Springs in the Kamchatka Peninsula and Kunashir Island, RussiaSusanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Mukherjee, Supratim; Pillay, Manoj; Perevalova, Anna A.; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Mukhopadhyay, Biswarup (2017-04)Desulfurococcus amylolyticus Z-533(T), a hyperthermophilic crenarcheon, ferments peptide and starch, generating acetate, isobutyrate, isovalerate, CO2, and hydrogen. Unlike D. amylolyticus Z-1312, it cannot use cellulose and is inhibited by hydrogen. The reported draft genome sequence of D. amylolyticus Z-533(T) will help to understand the molecular basis for these differences.
- Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, IcelandSusanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Pillay, Manoj; Ivanova, Natalia N.; Markowitz, Victor M.; Woyke, Tanja; Kyrpides, Nikos C.; Mukhopadhyay, Biswarup (2016-01-13)This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.
- A Reduced F420-Dependent Nitrite Reductase in an Anaerobic Methanotrophic ArchaeonHeryakusuma, Christian; Susanti, Dwi; Yu, Hang; Li, Zhou; Purwantini, Endang; Hettich, Robert L.; Orphan, Victoria J.; Mukhopadhyay, Biswarup (American Society for Microbiology, 2022-06-13)Anaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F420-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. M. jannaschii Fsr (MjFsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. MjFsrI reduces sulfite to sulfide with reduced F420 (F420H2), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition. However, the function of FsrIIs in ANME, which also rely on Mcr and live in sulfidic environments, is unknown. We have determined the catalytic properties of FsrII from a member of ANME-2c. Since ANME remain to be isolated, we expressed ANME2c-FsrII in a closely related methanogen, Methanosarcina acetivorans. Purified recombinant FsrII contained siroheme, indicating that the methanogen, which lacks a native sulfite reductase, produced this coenzyme. Unexpectedly, FsrII could not reduce sulfite or thiosulfate with F420H2. Instead, it acted as an F420H2-dependent nitrite reductase (FNiR) with physiologically relevant Km values (nitrite, 5 μM; F420H2, 14 μM). From kinetic, thermodynamic, and structural analyses, we hypothesize that in FNiR, F420H2- derived electrons are delivered at the oxyanion reduction site at a redox potential that is suitable for reducing nitrite (E09 [standard potential], 1440 mV) but not sulfite (E09, 2116 mV). These findings and the known nitrite sensitivity of Mcr suggest that FNiR may protect nondenitrifying ANME from nitrite toxicity. Remarkably, by reorganizing the reductant processing system, Fsr transforms two analogous oxyanions in two distinct archaeal lineages with different physiologies and ecologies. IMPORTANCE Coenzyme F420-dependent sulfite reductase (Fsr) protects methanogenic archaea inhabiting deep-sea hydrothermal vents from the inactivation of methyl coenzyme M reductase (Mcr), one of their essential energy production enzymes. Anaerobic methanotrophic archaea (ANME) that oxidize methane and rely on Mcr, carry Fsr homologs that form a distinct clade. We show that a member of this clade from ANME-2c functions as F420-dependent nitrite reductase (FNiR) and lacks Fsr activity. This specialization arose from a distinct feature of the reductant processing system and not the substrate recognition element. We hypothesize FNiR may protect ANME Mcr from inactivation by nitrite. This is an example of functional specialization within a protein family that is induced by changes in electron transfer modules to fit an ecological need.
- A Reexamination of Thioredoxin Reductase from Thermoplasma acidophilum, a Thermoacidophilic Euryarchaeon, Identifies It as an NADH-Dependent EnzymeSusanti, Dwi; Loganathan, Usha R.; Compton, Austin; Mukhopadhyay, Biswarup (ACS Publications, 2017-08-03)Flavin-containing Trx reductase (TrxR) of Thermoplasma acidophilum (Ta), a thermoacidophilic facultative anaerobic archaeon, lacks the structural features for the binding of 2′-phosphate of nicotinamide adenine dinucleotide phosphate (NADPH), and this feature has justified the observed lack of activity with NADPH; NADH has also been reported to be ineffective. Our recent phylogenetic analysis identified Ta-TrxR as closely related to the NADHdependent enzymes of Thermotoga maritima and Desulfovibrio vulgaris, both being anaerobic bacteria. This observation instigated a reexamination of the activity of the enzyme, which showed that Ta-TrxR is NADH dependent; the apparent Km for NADH was 3.1 μM, a physiologically relevant value. This finding is consistent with the observation that NADH:TrxR has thus far been found primarily in anaerobic bacteria and archaea.
- Sulfite reductase and thioredoxin in oxidative stress responses of methanogenic archaeaSusanti, Dwi (Virginia Tech, 2013-08-22)Methanogens are a group of microorganisms that utilize simple compounds such as H₂ + CO₂, acetate and methanol for the production of methane, an end-product of their metabolism. These obligate anaerobes belonging to the archaeal domain inhabit diverse anoxic environments such as rice paddy fields, human guts, rumen of ruminants, and hydrothermal vents. In these habitats, methanogens are often exposed to O₂ and previous studies have shown that many methanogens are able to tolerate O2 exposure. Hence, methanogens must have developed survival strategies to be able to live under oxidative stress conditions. The anaerobic species that lived on Earth during the early oxygenation event were first to face oxidative stress. Presumably some of the strategies employed by extant methanogens for combating oxidative stress were developed on early Earth. Our laboratory is interested in studying the mechanism underlying the oxygen tolerance and oxidative stress responses in methanogenic archaea, which are obligate anaerobe. Our research concerns two aspects of oxidative stress. (i) Responses toward extracellular toxic species such as SO32-, that forms as a result of reactions of O₂ with reduced compounds in the environment. These species are mostly seen in anaerobic environments upon O₂ exposure due to the abundance of reduced components therein. (ii) Responses toward intracellular toxic species such as superoxide and hydrogen peroxide that are generated upon entry of O₂ and subsequent reaction of O₂ with reduced component inside the cell. Aerobic microorganisms experience the second problem. Since a large number of microorganisms of Earth are anaerobes and the oxidative defense mechanisms of anaerobes are relatively less studied, the research in our laboratory has focused on this area. My thesis research covers two studies that fall in the above-mentioned two focus areas. In 2005-2007 our laboratory discovered that certain methanogens use an unusual sulfite reductase, named F420-dependent sulfite reductase (Fsr), for the detoxification of SO32- that is produced outside the cell from a reaction between oxygen and sulfide. This reaction occurred during early oxygenation of Earth and continues to occur in deep-sea hydrothermal vents. Fsr, a flavoprotein, carries out a 6-electron reduction of SO32- to S2-. It is a chimeric protein where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. We hypothesized that Fsr was developed in a methanogen from pre-existing parts. To begin testing this hypothesis we have carried out bioinformatics analyses of methanogen genomes and found that both Fsr-N homologs and Fsr-C homologs are abundant in methanogens. We called the Fsr-C homolog dissimilatory sulfite reductase-like protein (Dsr-LP). Thus, Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP) in methanogens. During the course of this study, we also identified two new putative F420H2-dependent enzymes, namely F420H2-dependent glutamate synthase and assimilatory sulfite reductase. Another aspect of my research concerns the reactivation of proteins that are deactivated by the entry of oxygen inside the cell. Here I focused specifically on the role of thioredoxin (Trx) in methanogens. Trx, a small redox regulatory protein, is ubiquitous in all living cells. In bacteria and eukarya, Trx regulates a wide variety of cellular processes including cell divison, biosynthesis and oxidative stress response. Though some Trxs of methanogens have been structurally and biochemically characterized, their physiological roles in these organisms are unknown. Our bioinformatics analysis suggested that Trx is ubiquitous in methanogens and the pattern of its distribution in various phylogenetic classes paralleled the respective evolutionary histories and metabolic versatilities. Using a proteomics approach, we have identified 155 Trx targets in a hyperthermophilic phylogenetically deeply-rooted methanogen, Methanocaldococcus jannaschii. Our analysis of two of these targets employing biochemical assays suggested that Trx is needed for reactivation of oxidatively deactivated enzymes in M. jannaschii. To our knowledge, this is the first report on the role of Trx in an organism from the archaeal domain. During the course of our work on methanogen Trxs, we investigated the evolutionary histories of different Trx systems that are composed of Trxs and cognate Trx reductases. In collaboration with other laboratories, we conducted bioinformatics analysis for the distribution of one of such systems, ferredoxin-dependent thioredoxin reductase (FTR), in all organisms. We found that FTR was most likely originated in the phylogenetically deeply-rooted microaerophilic bacteria where it regulates CO₂ fixation via the reverse citric acid cycle.