Browsing by Author "Szendrei, Zsofia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Managing Colorado Potato Beetle Insecticide Resistance: New Tools and Strategies for the Next Decade of Pest Control in PotatoHuseth, Anders S.; Groves, Russell L.; Chapman, Scott A.; Alyokhin, Andrei; Kuhar, Thomas P.; MacRae, Ian V.; Szendrei, Zsofia; Nault, Brian A. (Entomological Society of America, 2014-12-01)Neonicotinoid insecticides have been the most common management tool for Colorado potato beetle, Leptinotarsa decemlineata (Say), infestations in cultivated potato for nearly 20 yr. The relative ease of applying neonicotinoids at planting coupled with inexpensive, generic neonicotinoid formulations has reduced the incentive for potato growers to transition from these products to other mode of action (MoA) groups for early-season L. decemlineata control. Continuous use of neonicotinoids has resulted in resistant L. decemlineata populations in some production areas of the eastern United States. Continued reliance on neonicotinoids will accelerate L. decemlineata resistance development and result in additional insecticide inputs to manage these populations. Resistance management recommendations for L. decemlineata have focused on rotation of insecticides within the growing season. Growers using at-plant neonicotinoids for early-season L. decemlineata control are encouraged to rotate MoAs for later generations to delay resistance development. Although this short-term insecticide rotation has likely prolonged the utility of neonicotinoid insecticides, reducing reliance on a single MoA soil application at planting will improve the longevity of newer, more reduced-risk alternatives. The objectives of this article are twofold: 1) to provide a review of the current status of L. decemlineata neonicotinoid resistance, and 2) to propose long-term resistance management strategies that arrange reduced-risk MoA groups into several, multiyear sequences that will maximize L. decemlineata control and reduce the probability for resistance development. This recommendation maintains practical and economical approaches for L. decemlineata control, but limits reliance on any single MoA group to minimize selection pressure for resistance development.