Browsing by Author "Tewari, V. K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Modelling Specific Energy Requirement for a Power-Operated Vertical Axis Rotor Type Intra-Row Weeding Tool Using Artificial Neural NetworkKumar, Satya Prakash; Tewari, V. K.; Chandel, Abhilash Kumar; Mehta, C. R.; Pareek, C. M.; Chethan, C. R.; Nare, Brajesh (MDPI, 2023-09-07)Specific energy prediction is critically important to enhance field performance of agricultural implements. It enables optimal utilization of tractor power, reduced inefficiencies, and identification of comprehensive inputs for designing energy-efficient implements. In this study, A 3-5-1 artificial neural network (ANN) model was developed to estimate specific energy requirement of a vertical axis rotor type intra-row weeding tool. The depth of operation in soil bed, soil cone index, and forward/implement speed ratio (u/v) were selected as the input variables. Soil bin investigations were conducted using the vertical axis rotor (RVA), interfaced with draft, torque, speed sensors, and data acquisition system to record dynamic forces employed during soil–tool interaction at ranges of different operating parameters. The depth of operation (DO) had the maximum influence on the specific energy requirement of the RVA, followed by the cone index (CI) and the u/v ratio. The developed ANN model was able to predict the specific energy requirements of RVA at high accuracies as indicated by high R2 (0.91), low RMSE (0.0197) and low MAE (0.0479). Findings highlight the potential of the ANN as an efficient technique for modeling soil–tool interactions under specific experimental conditions. Such estimations will eventually optimize and enhance the performance efficiency of agricultural implements in the field.
- Workload Assessment of Tractor Operations with Ergonomic Transducers and Machine Learning TechniquesHota, Smrutilipi; Tewari, V. K.; Chandel, Abhilash K. (MDPI, 2023-01-27)Dynamic muscular workload assessments of tractor operators are rarely studied or documented, which is critical to improving their performance efficiency and safety. A study was conducted to assess and model dynamic load on muscles, physiological variations, and discomfort of the tractor operators arriving from the repeated clutch and brake operations using wearable non-invasive ergonomic transducers and data-run techniques. Nineteen licensed tractor operators operated three different tractor types of varying power ranges at three operating speeds (4–5 km/h), and on two common operating surfaces (tarmacadam and farm roads). During these operations, ergonomic transducers were utilized to capture the load on foot muscles (gastrocnemius right [GR] and soleus right [SR] for brake operation and gastrocnemius left [GL], and soleus left [SL] for clutch operation) using electromyography (EMG). Forces exerted by the feet during brake and clutch operations were measured using a custom-developed foot transducer. During the process, heart rate (HR) and oxygen consumption rates (OCR) were also measured using HR monitor and K4b2 systems, and energy expenditure rate (EER) was determined using empirical equation. Post-tractor operation cycle, an overall discomfort rating (ODR) for that operation was manually recorded on a 10-point psychophysical scale. EMG-based maximum volumetric contraction (%MVC) measurements revealed higher strain on GR (%MVC = 43%), GL (%MVC = 38%), and SR (%MVC = 41%) muscles which in normal conditions should be below 30%. The clutch and brake actuation forces were recorded in the ranges of 90–312 N and 105–332 N, respectively and were significantly affected by the operating speed, tractor type, and operating surface (p < 0.05). EERs of the operators were measured in the moderate-heavy to heavy ranges (9–24 kJ/min) during the course of trials, suggesting the need to refine existing clutch and brake system designs. Average operator ODR responses indicated 7.8% operations in light, 48.5% in light-moderate, 25.2% in moderate, 10.7% in moderate-high, and 4.9% operations in high discomfort categories. When evaluated for the possibility of minimizing the number of transducers for physical workload assessment, EER showed moderate-high correlations with the EMG signals (rGR = 0.78, rGL = 0.75, rSR = 0.68, rSL = 0.66). Similarly, actuation forces had higher correlations with EMG signals for all the selected muscles (r = 0.70–0.87), suggesting the use of simpler transducers for effective operator workload assessment. As a means to minimize subjectivity in ODR responses, machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC), and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and EMG at high accuracies of 87–97%, with RFC being the most accurate. Such high-throughput and data-run ergonomic evaluations can be instrumental in reconsidering workplace designs and better fits for end-users in terms of agricultural tractors and machinery systems.