Browsing by Author "Vlachos, Pavlos P."
Now showing 1 - 20 of 95
Results Per Page
Sort Options
- 2D CFD Simulation of a Circulation Control Inlet Guide VaneHill, Hugh Edward (Virginia Tech, 2007-01-15)This thesis presents the results of two 2-D computational studies of a circulation control Inlet Guide Vane (IGV) that takes advantage of the Coanda effect for flow vectoring. The IGV in this thesis is an uncambered airfoil that alters circulation around itself by means of a Coanda jet that exhausts along the IGV's trailing edge surface. The IGV is designed for an axial inlet flow at a Mach number of 0.54 and an exit flow angle of 11 degrees. These conditions were selected to match the operating conditions of the 90% span section of the IGV of the TESCOM compressor rig at the Compressor Aero Research Laboratory (CARL) located at Wright-Patterson AFB. Furthermore, using the nominal chord (length from leading edge of the IGV to the jet exit) for the length scale, the Reynolds number for the circulation control IGV in this region was 5e⁵. The first study was a code and turbulence model comparison, while the second study was an optimization study which determined optimal results for parameters that affected circulation around the IGV. Individual abstracts for the two studies are provided below. To determine the effect of different turbulence models on the prediction of turning angles from the circulation control IGV, the commercial code GASP was employed using three turbulence models. Furthermore, to show that the results from the optimization study were code independent a code comparison was completed between ADPAC and GASP using the Spalart-Allmaras turbulence model. Turbulence models employed by GASP included: two isotropic turbulence models, the one equation Spalart-Allmaras and the two-equation Wilcox 1998 k-ω. The isotropic models were then compared to the non-isotropic stress transport model Wilcox 1998 Stress-ω. The results show good comparison between turning angle trends and pressure loss trends for a range of blowing rates studied at a constant trailing edge radius size. When the three turbulence models are compared for a range of trailing edge radii, the models were in good agreement when the trailing edge is sufficiently large. However, at the smallest radius, isotropic models predict the greatest amount of circulation around the IGV that may be caused by the prediction of transonic flow above the Coanda surface. The optimization study employed the CFD code ADPAC in conjunction with the Spalart-Allmaras turbulence model to determine the optimal jet height, trailing edge radius, and supply pressure that would meet the design criteria of the TESCOM (TESt COMpressor) rig while minimizing the mass flow rate and pressure losses. The optimal geometry that was able to meet the design requirements had a jet height of h/Cn = 0.0057 and a trailing edge Radius R/Cn = 0.16. This geometry needed a jet to inflow total pressure ratio of 1.8 to meet the exit turning angle requirement. At this supply pressure ratio the mass flow rate required by the flow control system was 0.71 percent of the total mass flow rate through the engine. The optimal circulation control IGV had slightly lower pressure losses when compared to the cambered IGV in the TESCOM rig.
- The Aerodynamics of Low Sweep Delta WingsRullan, Jose Miguel (Virginia Tech, 2008-04-21)The aerodynamics of wings with moderately swept wings continues to be a challenging and important problem due to the current and future use in military aircraft. And yet, there is very little work devoted to the understanding of the aerodynamics of such wings. The problem is that such wings may be able to sustain attached flow next to broken-down delta-wing vortices, or stall like two-dimensional wings, while shedding vortices with generators parallel to their leading edge. To address this situation we studied the flow field over diamond-shaped planforms and sharp-edged finite wings. Possible mechanisms for flow control were identified and tested. We explored the aerodynamics of swept leading edges with no control. We presented velocity and vorticity distributions along planes normal and parallel to the free stream for wings with diamond shaped planform and sharp leading edges. We also presented pressure distributions over the suction side of the wing. Results indicated that in the inboard part of the wing, an attached vortex can be sustained, reminiscent of delta-wing type of a tip vortex, but further in the outboard region 2-D stall dominated even at 13° AOA and total stall at 21° AOA. To explore the unsteady flow field and the effectiveness of leading-edge control of the flow over a diamond-planform wing at 13° AOA, we employed Particle Image Velocimetry (PIV) at a Reynolds number of 43,000 in a water tunnel. Our results indicated that two-D-like vortices were periodically generated and shed. At the same time, an underline feature of the flow, a leading edge vortex was periodically activated, penetrating the separated flow, eventually emerging downstream of the trailing edge of the wing. To study the motion and its control at higher Reynolds numbers, namely 1.3 x 106 we conducted experiments in a wind tunnel. Three control mechanisms were employed, an oscillating mini-flap, a pulsed jet and spanwise continuous blowing. A finite wing with parallel leading and trailing edges and a rectangular tip was swept by 0°, 20°, and 40° and the pulsed jet employed as is control mechanism. A wing with a diamond-shaped-planform, with a leading edge sweep of 42°, was tested with the mini-flap. Surface pressure distributions were obtained and the control flow results were contrasted with the no-control cases. Our results indicated flow control was very effective at 20° sweep, but less so at 40° or 42°. It was found that steady spanwise blowing is much more effective at the higher sweep angle.
- Biological Ion Transporters as Gating Devices for Chemomechanical and Chemoelectrical Energy ConversionSundaresan, Vishnu Baba (Virginia Tech, 2007-05-15)This dissertation presents a new class of engineered devices, fabricated from synthetic materials and protein transporters extracted from cell membranes of plants, that use chemomechanical and chemoelectrical energy conversion processes to perform mechanical and electrical work. The chemomechanical energy conversion concept is implemented in a protein based actuator. The chemical energy is applied as an electrochemical gradient of protons across a membrane assembly formed from phospholipids and SUT4 -a proton-sucrose cotransporter. The membrane assembly forms a physical barrier between two chambers in the actuator. The SUT4 proteins in the membrane assembly balances the applied electrochemical gradient by a concentration gradient of sucrose across the membrane. The sucrose gradient simultaneously generates an osmotic flow which deforms a flexible wall in a constrained chamber of the actuator, thus exhibiting mechanical strain. The sucrose concentration balanced by the protein transporter is used as the control variable for fluid flow through the membrane. The transport properties of the membrane assembly has been characterized for the control variable in the system. The reaction kinetics based model for solute transport through the cotransporter is modified to compute the equilibrium constant for solute binding and fluid translocation rate through the membrane. The maximum initial flux rate through the membrane is computed to be 2.51+/-0.6 ul/ug.cm^2.min for an applied pH4.0/pH7.0 concentration gradient across the membrane. The flux rate can be modulated by varying the sucrose concentration in the actuator. The prototype actuator has been fabricated using the characterized membrane assembly. A maximum deformation of 60microns at steady state is developed by the actuator for 20 mM sucrose concentration in the system. The chemoelectrical energy conversion concept is based on the electrogenic proton pumps in plasma and vacuolar membranes of a plant cell. A prototype device referred to as a BioCell demonstrates the chemoelectric energy conversion using V-type ATPase extracted from plant cell membranes. The enzyme in the bilayer lipid membrane hydrolyzes ATP and converts the chemical energy from the reaction into a charge gradient across the membrane. Silver-silver chloride electrodes on both the sides of the membrane convert the charge established by the proton pumps into cell voltage. The redox reactions at the surface of the electrodes result in a current through the external load connected to the terminals of the BioCell. The single cell behaves like a constant current power source and has an internal resistance of 10-22kOhms. The specific power from the cell of the membrane assembly is estimated to be around 2microwatts/sq/cm. The demonstration of chemoelectrical energy conversion shows the possibility to use ATP as an alternative source of electrical power to design novel chemo-electro-mechanical devices.
- CFD Simulation Methodology for Ground-Coupled Ventilation SystemAlghamdi, Jamal Khaled (Virginia Tech, 2008-06-25)In the past two decades, a growing interest in alternative energy resources as a replacement to the non-renewable resources used now days. These alternatives include geothermal energy which can be used to generate power and reduce the demands on energy used to heat and cool buildings. Ground-coupled ventilation system is one of the many applications of the geothermal energy that have a lot of attention in the early 80's and 90's but all designs of the system where based on single case situations. On the other hand, computational fluid dynamics tools are used to simulate heat and fluid flow in any real life situation. They start to develop rapidly with the fast development of computers and processors. These tools provide a great opportunity to simulate and predict the outcome of most problems with minimum loss and better way to develop new designs. By using these CFD tools in GCV systems designing procedure, energy can be conserved and designs going to be improved. The main objective of this study is to find and develop a CFD modeling strategy for GCV systems. To accomplish this objective, a case study must be selected, a proper CFD tool chosen, modeling and meshing method determined, and finally running simulations and analyzing results. All factors that affect the performance of GCV should be taken under consideration in that process such as soil, backfill, and pipes thermal properties. Multiple methods of simulation were proposed and compared to determine the best modeling approach.
- Chaos in Pulsed Laminar FlowKumar, Pankaj (Virginia Tech, 2010-08-09)Fluid mixing is a challenging problem in laminar flow systems. Chaotic advection can play an important role in enhancing mixing in such flow. In this thesis, different approaches are used to enhance fluid mixing in two laminar flow systems. In the first system, chaos is generated in a flow between two closely spaced parallel circular plates by pulsed operation of fluid extraction and reinjection through singularities in the domain. A singularity through which fluid is injected (or extracted) is called a source (or a sink). In a bounded domain, one source and one sink with equal strength operate together as a source-sink pair to conserve the fluid volume. Fluid flow between two closely spaced parallel plates is modeled as Hele-Shaw flow with the depth averaged velocity proportional to the gradient of the pressure. So, with the depth-averaged velocity, the flow between the parallel plates can effectively be modeled as two-dimensional potential flow. This thesis discusses pulsed source-sink systems with two source-sink pairs operating alternately to generate zig-zag trajectories of fluid particles in the domain. For reinjection purpose, fluid extracted through a sink-type singularity can either be relocated to a source-type one, or the same sink-type singularity can be activated as a source to reinject it without relocation. Relocation of fluid can be accomplished using either "first out first in" or "last out first in" scheme. Both relocation methods add delay to the pulse time of the system. This thesis analyzes mixing in pulsed source-sink systems both with and without fluid relocation. It is shown that a pulsed source-sink system with "first out first in" scheme generates comparatively complex fluid flow than pulsed source-sink systems with "last out first in" scheme. It is also shown that a pulsed source-sink system without fluid relocation can generate complex fluid flow. In the second system, mixing and transport is analyzed in a two-dimensional Stokes flow system. Appropriate periodic motions of three rods or periodic points in a two-dimensional flow are determined using the Thurston-Nielsen Classification Theorem (TNCT), which also predicts a lower bound on the complexity generated in the fluid flow. This thesis extends the TNCT -based framework by demonstrating that, in a perturbed system with no lower order fixed points, almost invariant sets are natural objects on which to apply the TNCT. In addition, a method is presented to compute line stretching by tracking appropriate motion of finite size rods. This method accounts for the effect of the rod size in computing the complexity generated in the fluid flow. The last section verifies the existence of almost invariant sets in a two-dimensional flow at finite Reynolds number. The almost invariant set structures move with appropriate periodic motion validating the application of the TNCT to predict a lower bound on the complexity generated in the fluid flow.
- Characteristics of the High Speed Gas-Liquid InterfaceWeiland, Christopher Jude (Virginia Tech, 2009-12-02)The objective of this dissertation was to investigate physical characteristics of high speed gas-liquid interfaces for the cases of subsonic, transonic, and supersonic gas jets submerged underwater and the transient development of an underwater projectile reaching the supercavitating state. These studies are motivated by the need to understand the basic physics associated with a novel submersible missile launcher termed the Water Piercing Missile Launcher (WPML). This dissertation presents the first study of high speed round and rectangular gas jets submerged underwater utilizing a global optical measurement technique. This technique allows quantitative measurement of the entire gas jet and the interfacial motion. Experimental results indicate that the penetration of the gas jets into a quiescent liquid is strongly influenced by the injection mass flow and the nozzle geometry. In contrast, the oscillations of the interface are influenced by the injection Mach number. The transition from a momentum driven to a buoyant jet is determined using a characteristic length scale that appears to be in good agreement with experimental observations. Moreover, the unsteadiness of the interface appears to be governed by both Kevin-Helmholtz and Rayleigh-Taylor instabilities. This dissertation also contains the first study of a projectile accelerating to reach the supercavitating state. Experimental results show that the transient development of the supercavity is governed by the formation of a vortex ring. Nuclei are shed from the forebody of the accelerating projectile and are entrained in the vortex ring core where they are subjected to low pressure and subsequently expand rapidly. A characteristic time scale for this supercavity development is presented.
- Characterization and Modeling of the Ionomer-Conductor Interface in Ionic Polymer TransducersAkle, Barbar Jawad (Virginia Tech, 2005-07-29)Ionomeric polymer transducers consist of an ion-exchange membrane plated with conductive metal layers on its outer surfaces. Such materials are known to exhibit electromechanical coupling under the application of electric fields and imposed deformation (Oguro et al., 1992; Shahinpoor et al., 1998). Compared to other types of electromechanical transducers, such as piezoelectric materials, ionomeric transducers have the advantage of high-strain output (> 9% is possible), low-voltage operation (typically less than 5 V), and high sensitivity in the charge-sensing mode. A series of experiments on actuators with various ionic polymers such as Nafion and novel poly(Arylene ether disulphonate) systems (BPS and PATS) and electrode composition demonstrated the existence of a linear correlation between the strain response and the capacitance of the material. This correlation was shown to be independent of the polymer composition and the plating parameters. Due to the fact that the low-frequency capacitance of an ionomer is strongly related to charge accumulation at the electrodes, this correlation suggests a strong relationship between the surface charge accumulation and the mechanical deformation in ionomeric actuators. The strain response of water-hydrated transducers varies from 50 μstrain/V to 750 μstrain/V at 1Hz while the strain-to-charge response is between 9 μstraincm2 and 15 μstraincm2. This contribution suggests a strong correlation between cationic motion and the strain in the polymer at the ionomer-conductor interface. A novel fabrication technique for ionic polymer transducers was developed for this dissertation for the purpose of quantifying the relationship between electrode composition and transducer performance. It consists of mixing an ionic polymer dispersion (or solution) with a fine conducting powder and attaching it to the membrane as an electrode. The Direct Assembly Process (DAP) allows the use of any type of ionomer, diluent, conducting powder, and counter ion in the transducer, and permits the exploration of any novel polymeric design. Several conducting powders have been incorporated in the electrode including single-walled carbon nanotubes (SWNT), polyaniline (PANI) powders, high surface area RuO2, and carbon black electrodes. The DAP provided the tool which enabled us to study the effect of electrode architecture on performance of ionic polymer transducers. The DAP allows the variation in the electrode architecture which enabled us to fabricate dry transducers with 50x better performance compared to transducers made using the state of the art impregnation-reduction technique. DAP fabricated transducers achieved a strain of 9.4% at a strain rate of 1%/s. Each electrode material had an optimal concentration in the electrode. For RuO2, the optimal loading was approximately 45% by volume. This study also demonstrated that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Extensional actuation in ionic polymer transducers was first reported and characterized in this dissertation. An electromechanical coupling model presented by Leo et al. (2005) defined the strain in the active areas as a function of the charge. This model assumed a linear and a quadratic term that produces a nonlinear response for a sine wave actuation input. The quadratic term in the strain generates a zero net bending moment for ionic polymer transducers with symmetric electrodes, while the linear term is canceled in extensional actuation for symmetric electrodes. Experimental results demonstrated strains on the order of 110 μstrain in the thickness direction compared to 1700 μstrain peak to peak on the external fibers for the same transducer, could be achieved when it is allowed to bend under +/-2V potential at 0.5 Hz. Extensional and bending actuation in ionic polymer transducers were explained using a bimorph active area model. Several experiments were performed to compare the bending actuation with the extensional actuation capability. The active area in the model was assumed to be the high surface area electrode. Electric double layer theory states that ions accumulate in a thin boundary layer close to the metal-polymer interface. Since the metal powders are evenly dispersed in the electrode area of the transducer, this area is expected to actuate evenly upon voltage application. This active area model emphasizes the importance the boundary layer on the conductor-ionomer interfacial area. Computing model parameters based on experimental results demonstrated that the active areas model collapses the bending data from a maximum variation of 200% for the strain per charge, to less than 68% for the model linear term. Furthermore, the model successfully predicted bending response from parameters computed using thickness experimental results. The prediction was particularly precise in estimating the trends of non-linearity as a function of the amount of asymmetry between the two electrodes.
- Characterization of the Mechanism of Drag Reduction Using a Karhunen-Loève Analysis on a Direct Numerical Simulation of Turbulent Pipe FlowDuggleby, Andrew Thomas (Virginia Tech, 2006-08-02)The objective of this study is to characterize the mechanism of drag reduction by comparing the dynamical eigenfunctions of a turbulent pipe flow against those of two known cases of drag reduced flows. The first is forced drag reduction by spanwise wall oscillation, and the second is natural drag reduction found in relaminarizing flow. The dynamics are examined through a Karhunen-Lo`eve (KL) expansion of the direct numerical simulation flow field results. The direct numerical simulation (DNS) is performed using NEK5000, a spectral element Navier-Stokes solver, the first exponentially convergent investigation of DNS of turbulence in a pipe. The base flow is performed at a Reynolds number of Re = 150, resulting in a KL dimension of D_KL = 2130. As in turbulent channel flow, propagating modes are found, characterized with constant phase speed, and contribute of 80.58% of the total fluctuating energy. Based upon wavenumber characteristics and coherent vorticity visualization, four subclasses of propagating modes and two subclasses of non-propagating modes are discovered, qualitatively similar to the horseshoe (hairpin) vortex structure reported in literature. The drag reduced case is performed at the same Reynolds number with a spanwise velocity A+ = 20, a period of T+ = 50, and is driven by a constant pressure gradient. This results in a increase of flow rate by 27 %, and the KL dimension is reduced to D_KL = 102, a 96% reduction. The propagating modes, in particular the wall modes, are pushed away from the wall, resulting in a 34% increase in their advection speed, and a shift away from the wall of the root-mean-square and Reynolds stress peaks. The relaminarizing case observes the chugging motion of the mean flow rate when the Reynolds number is barely turbulent, at Re = 95. This chugging motion is the relaminarization of the flow, resulting in an increased flow rate, and then before complete relaminarization, the flow regains its turbulent state. This occurs because the lift modes, which are responsible for the majority of the energy in the inertial range of the energy spectra, decrease by two or three orders of magnitude. The chugging ends when the wall modes restart the turbulent cascade, and the lift modes are repopulated with energy. A model for the energy path is developed, with energy going from the pressure gradient to the shear modes, then to the roll modes, then to the wall modes, and then finally to the lift modes. It is concluded that drag reduction in a flow can be achieved by disrupting any leg of this model, thus disrupting the self-sustaining mechanism of turbulence. The spanwise wall oscillation shortened the life span of the wall modes, thus limiting their ability to pass energy to the lift modes. Likewise, the low Reynolds number did not provide enough energy to sustain the lift modes, and so relaminarization began. The contribution of this work is twofold. Firstly, the structure of turbulent pipe flow is examined and visualized for the first time using the Karhunen-Lo`eve method. The second, and perhaps greatest contribution of this work, is that the mechanism of drag reduction has been characterized as the link between the wall modes and the lift modes. This will allow future work on developing real methods of drag reduction, and eventually porting it to high Reynolds number flows, like that of an oil pipeline at Re= 40, 000. To achieve this, certain questions remain to be answered, such as what is the most efficient method of disrupting the wall-lift mechanism? Is there a single structure that can be identified and manipulated that gives a similar eect? Once answered, this will allow for a new generation of pipelines to be developed, and considering the implications in petroleum industry alone, will result in a significant contribution to the economy of the world.
- A Comparative In Vitro Study of the Flow Characteristics Distal to Mechanical and Natural Mitral ValvesMace, Amber (Virginia Tech, 2002-12-16)Mechanical heart valve (MHV) flows are characterized by high shear stress, regions of recirculation, and high levels of turbulent fluctuations. It is well known that these flow conditions are hostile to blood constituents, which could lead to thromboembolism. In the ongoing effort to reduce long-term complications and morbidity, it is imperative that we better understand the flow characteristics of the natural valve as well as that of the mechanical valve. In this study, we overcome many of the limitations imposed by other measurement techniques by employing a powerful, high-speed Time-Resolved Digital Particle Image Velocimetry (TRDPIV) system to map the flow field. We compare the flows downstream from a St. Jude Medical bileaflet MHV, a porcine mitral valve (MV), and a combination of both valves to simulate the technique of chordal preservation. Instantaneous velocity fields and vorticity maps are presented, which provide detailed information about the development of the flow. Time-averaged velocity, vorticity, and turbulent kinetic energy measurements are also discussed. Asynchronous leaflet behavior was observed in all cases involving the mechanical valve. Extensive vortex formation and propagation are present distal to the MHV, which leads to high levels of jet dispersion. The porcine mitral jet exhibits lateral oscillatory behavior, but it does not disperse like the MHV. In the MHV/porcine combination system, the native tissue limits vortex propagation and jet dispersion. The results presented provide insight on the hemodynamic characteristics of natural and MHVs, reveal the detrimental character of asynchronous leaflet opening, document the mechanism of vortex formation and interaction distal to the valve, and illustrate the importance of chordal preservation. These results may improve MHV replacement clinical practice and/or motivate and aid the design of MHVs that better mimic natural mitral flow patterns.
- Complex hemolymph circulation patterns in grasshopper wingsSalcedo, Mary K.; Jun, Brian H.; Socha, John J.; Pierce, Naomi E.; Vlachos, Pavlos P.; Combes, Stacey A. (Nature Portfolio, 2023-03)An insect's living systems-circulation, respiration, and a branching nervous system-extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered "lifeless" cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopper Schistocerca americana revealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and "leaky" flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing's internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight. Study of grasshopper wings shows that hemolymph flows through every vein in the insect wing, creating a broad circuitous flow pattern in the wings, with three different flow behaviours (pulsatile, leaky, aperiodic).
- Computational Fluid Flow Analysis of the Enhanced-Once through Steam generator Auxiliary feedwater systemSethapati, Vivek Venkata (Virginia Tech, 2011-05-02)The once through steam generator (OTSG) is a single pass counter flow heat exchanger in which primary pressurized water from the core is circulated. Main Feedwater is injected in an annular gap on the outer periphery of the steam generator shroud such that it aspirates steam to preheat the feedwater to saturation temperature. An important component of the OTSG and enhanced once through steam generator (EOTSG) is the auxiliary feedwater system (AFW), which is used during accident/transient scenarios to remove residual heat by injecting water through jets along the outer periphery of the heat exchanger core directly on to the tubes at the top of the OTSG. The intention is for the injected water, which is subcooled, to spread into the tube nest and wet as many tubes as possible. In this project, the main objectives were to use first principles Computational Fluid Dynamics to predict the number of wetted tubes versus flow rate in the EOTSG at the AFW injection location above the top tube support plate. To perform the fluid analysis, the losses in the bypass leakage flow and broached hole leakage flow were first quantified and then used to model a 1/8th sector of the EOTSG. Using user defined functions (UDF), the loss coefficients of the leakage flows were implemented on the 1/8th sector of the EOTSG computational model to provide boundary conditions at the bypass flow and leakage flow locations With this method, the number of tubes wetted in the sector of EOTSG for various AFW flow rates was found. Results showed that the number of wetted tubes was in very close agreement to that predicted by experimental-analytical methods by the sponsor, AREVA. With the maximum flow rate of 65 l/s a total of 318 tubes were wetted and the percentage of tubes wetted with broached holes was 8.7%. The analysis on the bypass leakage flow showed that the loss coefficients was a function of the mass flow rate or the flow Reynolds number through the gap and it increased as the Reynolds number increased from 300 to 1600. The experimental and computational loss coefficients agree to within 15% of each other. In contrast, the constant loss coefficient of 1.3 used by AREVA was much higher than that obtained in this study, particularly in the low Reynolds number range. As the Reynolds number approached 3000, the loss coefficients from this study approached the value of 1.3. This value of the loss coefficient was implemented for the bypass flow leakage in the 1/8th sector of the EOTSG model. The analysis on the broached hole leakage flow was performed using a single hole, five holes, and one, two, four and eight rows of broached holes in order to characterize the loss coefficients. The one hole and five hole computational models were validated with experiments. The computational models showed the presence of voids in the leakage flow through the tube support plate (TSP), which were not observed (visually) in the experiments. The characterization of the broached hole leakage in the one, two and four rows showed that the loss coefficient of the control broached hole increased as the number of rows increased. These results indicated that for the same height of water on the TSP, the resistance to leakage flow increased as the number of tubes increased. They also indicated that leakage flow through the broached holes was not solely a function of the height of water above the TSP but also the surrounding geometrical topology and the flow characteristics. However, the analysis done for eight rows showed that the loss coefficient became constant after a certain number of rows as the loss coefficient differed by only 5% from the results of the four rows. From these results it was determined that the loss coefficient asymptotes to an estimated value of 4.0 which was implemented in the broached hole leakage flow in the 1/8th sector of the EOTSG. Computational models of the 1/8th sector of the EOTSG were implemented with the respective loss coefficients for the bypass and leakage flows. Results showed that as the AFW flow rate increased, the percentage wetted tubes increased. The data matched closely with AREVA's experimental-analytical model for flow rates of 14.5 l/s and higher. It was also deduced that complete wetting of the tubes is not possible at the maximum AFW flow rate of 65 l/s.
- Computational model of coronary tortuosityVorobtsova, Natalya (Virginia Tech, 2015-02-05)Coronary tortuosity is the abnormal curving and twisting of the coronary arteries. Although the phenomenon of coronary tortuosity is frequently encountered by cardiologists its clinical significance is unclear. It is known that coronary tortuosity has significant influence on the hemodynamics inside the coronary arteries, but it is difficult to draw definite conclusions due to the lack of patient-specific studies and an absence of a clear definition of tortuosity. In this work, in order to investigate a relation of coronary tortuosity to such diseases as atherosclerosis, ischemia, and angina, a numerical investigation of coronary tortuosity was performed. First, we studied a correlation between a degree of tortuosity and flow parameters in three simplified vessels with curvature and zero torsion. Next, a statistical analysis based on flow calculations of 23 patient-based real tortuous arteries was performed in order to investigate a correlation between tortuosity and flow parameters, such as pressure drop, wall shear stress distribution, and a strength of helical flow, represented by a helicity intensity, and concomitant risks. Results of both idealized and patient-specific studies indicate that a risk of perfusion defects grows with an increased degree of tortuosity due to an increased pressure drop downstream an artery. According to the results of the patient-specific study, a risk of atherosclerosis decreases in more tortuous arteries - a result different from an outcome of the idealized study of arteries with zero torsion. Consequently, a modeling of coronary tortuosity should take into account all aspects of tortuosity including a heart shape that introduces additional torsion to arteries. Moreover, strength of a helical flow was shown to depend strongly on a degree of tortuosity and affect flow alterations and accompanying risks of developing atherosclerosis and perfusion defects. A corresponding quantity, helicity intensity, might have a potential to be implemented in future studies as a universal single parameter to describe tortuosity and assess congruent impact on the health of a patient.
- Computational Modeling and Simulations of Hydrodynamics for Air-Water External Loop Airlift ReactorsLaw, Deify (Virginia Tech, 2010-05-27)External loop airlift reactors are widely used for biochemical applications such as syngas fermentation and wastewater treatment. To further understand the inherent gas-liquid flow physics within the reactors, computational modeling and simulations of hydrodynamics for air-water external loop airlift reactors were investigated. The gas-liquid flow dynamics in a bubble column were simulated using a FORTRAN code developed by Los Alamos National Laboratory, CFDLib, which employs an Eulerian-Eulerian ensemble averaged method. A two-dimensional Cartesian coordinate system was used to conduct an extensive grid resolution study; it was found that grid cells smaller than the bubble diameter produced unstable solutions. Next, closure models for drag force and turbulent viscosity were investigated for a simple bubble column geometry. The effects of using a bubble pressure model and two drag coefficient models, the White model and the Schiller-Naumann model, were investigated. The bubble pressure model performed best for homogeneous (low velocity) flows and the Schiller-Naumann model was best for all flow regimes. Based on the studies for bubble column flows, an external loop airlift reactor was simulated using both two- and three-dimensional coordinates and results for gas holdup and riser velocity agreed better with experimental data for the 3D simulations. It was concluded that when performing 2D and 3D simulations, care must be taken when specifying the effective bubble diameter size, especially at high flow rates. Population balance models (PBM) for bubble break-up and coalescence were implemented into CFDLib, validated with experiments, and simulated for the external loop airlift reactor at high inlet superficial gas velocities. The PBM predictions for multiple bubble sizes were comparable with the single bubble size simulations; however, the PBM simulations better predicted the formation of the gas bubble in the downcomer. The 3D PBM simulations also gave better predictions for the average bubble diameter size in the riser. It was concluded that a two-dimensional domain is adequate for gas-liquid flow simulations of a simple bubble column geometry, whereas three-dimensional simulations are required for the complex airlift reactor geometry. To conclude, a two-fluid Eulerian-Eulerian model coupled with a PBM is needed for quantitative as well as physical predictions of gas-liquid external loop airlift reactor flows at high inlet superficial gas velocities.
- Convection Calibration of Schmidt-Boelter Heat Flux Gages in Shear and Stagnation Air FlowHoffie, Andreas Frank (Virginia Tech, 2006-12-19)This work reports the convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow. The gages were provided by Sandia National Laboratories and included two one-inch diameter and two one-and-one-half-inch diameter Schmidt-Boelter heat flux gages. In order to calibrate the sensors a convection calibration facility has been designed, including a shear test stand, a stagnation test stand, an air heater and a data acquisition system. The current physical model for a combined radiation and convection heat transfer environment uses an additional thermal resistance around the heat flux gage. This model clearly predicts a non-linear dependency of the gage sensitivity over a range of heat transfer coefficients. A major scope of this work was to experimentally verify the relation found by the model assumptions. Since the actual heat sink temperature is not known and cannot be measured, three different cases have been examined resulting in three different sensitivities for one pressure value, which is the gage sensitivity for the not cooled case and the gage sensitivity for the cooled case, based on the plate temperature or on the cooling water temperature. All of the measured sensitivities for shear as well as for stagnation flow fit well in the theory and show the non-linear decay for increasing heat transfer coefficient values. However, the obtained data shows an offset in the intersection with the sensitivity at zero heat transfer coefficient. This offset might arise from different radiation calibration techniques and different surface coatings of test gage and reference standard.
- A decision-support framework for design of natural ventilation in non-residential buildingsZhao, Ying (Virginia Tech, 2007-04-09)This study develops a decision-support framework assisting the design of non-residential buildings with natural ventilation. The framework is composed of decision modules with input, analysis algorithms and output of natural ventilation design. The framework covers ventilation with natural driving force and mechanical-assisted ventilation. The framework has two major assessment levels: feasibility assessment and comparison of alternative natural ventilation approaches. The feasibility assessment modules assess the potential of the site with the design proposition for natural ventilation in terms of wind, temperature, humidity, noise and pollution conditions. All of the possible natural ventilation approaches and system designs are assessed by first applying constraints functions to each of the alternatives. Then the comparison of alternative approaches to natural ventilation continues by assessing the critical performance mandates that include energy savings, thermal comfort, acoustic control, indoor air quality and cost. Approaches are finally ranked based on their performance.
- Delay of left ventricular longitudinal expansion with diastolic dysfunction: impact on load dependence of e′ and longitudinal strain rateLwano, Hiroyuki; Pu, Min; Upadhya, Bharathi; Meyers, Brett; Vlachos, Pavlos P.; Little, William C. (The Physiological Society, 2014-07)The effect of diastolic dysfunction (DD) on the timing of left ventricular (LV) diastolic longitudinal and circumferential expansion and their load dependence is not known. This study evaluated the timing of the peak early diastolic LV inflow velocity (E), mitral annular velocity (e'), and longitudinal and circumferential global strain rates (SRE) in 161 patients in sinus rhythm. The intraventricular pressure difference (IVPD) from the left atrium to the LV apex was obtained using color M-mode Doppler data to integrate the Euler equation. The diastolic function was graded according to the guidelines. In normals (N = 57), E, e', longitudinal SRE, and circumferential SRE occurred nearly simultaneously during the IVPD. With DD (N = 104), e' and longitudinal SRE were delayed occurring after the IVPD (e': 18 +/- 23 msec, longitudinal SRE: 13 +/- 21 msec from the IVPD), whereas circumferential SRE (-8 +/- 28 msec) and E (-2 +/- 13 msec) were not delayed. The normal dependence of e' and longitudinal SRE on IVPD was reduced in DD; while the relation of circumferential SRE and E to IVPD were unchanged in DD. Thus, normally, the LV expands symmetrically during early diastole and both longitudinal and circumferential expansions are related to the IVPD. With DD, early diastolic longitudinal LV expansion is delayed, occurring after the IVPD and LV filling, resulting in their relative independence from the IVPD. In contrast, with DD, circumferential SRE and mitral inflow are not delayed and their normal relation to the IVPD is unchanged.
- Design and Analysis of Biomimetic Medusa RobotsVillanueva, Alexis A. (Virginia Tech, 2013-05-08)The design of unmanned underwater vehicle (UUV) was inspired by the form and functionality of Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency, good room for payload, and a wide range of sizes and morphology. Shape memory alloy (SMA) actuators were selected as the primary source of actuation for the propulsion of the artificial jellyfish node. These actuators offer high power density which enables a compact system size and silent operation which is preferred for surveillance. SMA wires mimic the form and function of natural muscles; allowing for a wider range of applications than conventional actuators. Commercial SMA wires (100 um in diameter) can exhibit a 4% deformation of the initial actuator length with a blocking stress of over 200 MPa. The deformation of SMA wire is not enough to mimic the bell contraction of jellyfish. In order to resolve this problem, a beam-shape composite actuator using SMA wires as the active component, termed as BISMAC, was designed to provide large curvature. The BISMAC design was inspired by rowing jellyfish bell contraction. Characterization of maximum deformation in underwater conditions was performed for different actuator configurations to analyze the effect of design parameters that include silicone thickness, flexible steel thickness and distance between SMA and flexible steel. A constant cross-section (CC) BISMAC of 16 cm in length was found to achieve deformation with a radius of curvature of 3.5 cm. Under equilibrium conditions, the CC-BISMAC was found to achieve 80% of maximum deformation consuming 7.9 J per cycle driven at 16.2 V/0.98 A and frequency of 0.25 Hz. Using the a developed analytical model, an actuator design was fabricated mimicking the maximum deformation profile of the A. aurita. The optimized AA-BISMAC achieved a maximum curvature of 0.428 1/cm as compared to 0.438 1/cm for the A. aurita with an average squared root error of 0.043 (1/cm), 10.2% of maximum A. aurita curvature. BISMAC actuators are unidirectional flexible actuators capable of exhibiting high curvature. To extend the application range of these actuators, they were modified to achieve bidirectional deformation. The new bidirectional actuators termed as "BiFlex" actuators had the capability to achieve large deformation in two directions. The FlexLegs consist of six segments which can be actuated individually. Two different sets of legs were constructed to determine the effect of size. The small legs measured 35.8 mm in height and 63.2 mm in width and the large legs were 97.4 mm in height and 165.4 mm in width. The small FlexLegs achieved a maximum deformation of 12 % and 4 % in the x- and y-direction respectively using a power of 0.7 W while producing a maximum force of 0.023 N. They were also able to withstand a load of 1.18 N. The large FlexLegs had a maximum deformation of 57 % and 39 % in the x- and y-direction respectively using a power of 3 W while producing a force of 0.045 N. They were able to withstand a load of 0.25 N. The legs were also able to perform several walking algorithms consisting of stepping, crabbing and yawing. In order to reduce the power consumption and contraction time of SMA wires, a feedback control scheme using wire resistance was developed. The controller required the knowledge of threshold resistance and safe current inputs which were determined experimentally. The overheating effect of SMA wires was analyzed for BioMetal Fiber (BMF) and Flexinol 100 "m diameter wires revealing an increase in resistance as the wires overheated. The controller was first characterized on a SMA wire with bias spring system for a BMF 100 using I_hi=0.5 A and I_low=0.2 A, where hi corresponds to peak current for fast actuation and low corresponds to the safe current which prevents overheating and maintains desired deformation. A contraction of 4.59% was achieved in 0.06 s using the controller and the deformation was maintained for 2 s at low current. The BISMAC actuator was operated using the controller with I_hi=1.1 A and I_low=0.65 A achieving a 67% decrease in contraction time compared to using a constant driving current of I_low=0.2 A and a 60% decrease in energy consumption compared to using constant I_hi=0.5 A while still exceeding the contraction requirements of the Aurelia aurita. Two fundamental parameters at the composition level were associated with the power consumption of SMA: i) martensite to austentite phase transition temperature and ii) thermal hysteresis. Ideally, one would like to reduce both these quantities and for this purpose an equiatomic Ni-Ti alloy was modified with Cu. Replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For Ni-Ti alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 "C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, ±1, ±2, ±3, ±4, ±5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The results show the possibility of achieving low power consuming high performance SMAs. Using the BISMAC actuator and feedback control system, a robotic jellyfish called Robojelly that mimics the morphology and kinematics of the Aurelia aurita species was created. A systematic fabrication technique was developed to replicate the essential structural features of A. aurita. Robojelly's body was fabricated from RTV silicone having a total mass of 242 g and bell diameter of 16.4 cm. Robojelly was able to generate enough thrust in static water conditions to propel itself and achieve a proficiency of 0.19 s-1 while the A. aurita achieves a proficiency of around 0.25 s-1. A thrust analysis based on empirical measurements for natural jellyfish was used to compare the performance of the different robotic configurations. The configuration with best performance was a Robojelly with segmented bell and a passive flap structure. Robojelly was found to consume an average power on the order of 17 W with the actuators not having fully reached thermal steady state. A comparative kinematics analysis was conducted between a natural Aurelia aurita and Robojelly. The resistance feedback controller was implemented to tailor the deformation profile of BISMAC actuators embedded in Robojelly. Robojelly's performance was quantified in terms of thrust production and power consumption during vertical swimming experiments. A maximum average instantaneous thrust production of 0.006 N was achieved at a driving current (Ihi) of 1.5 A with 35% duty cycle. Rapid heating of SMA wires was found to reduce power consumption and increase thrust. The bell kinematic analysis revealed resemblance and differences in bell deformation trajectories of the biomimetic and natural jellyfish. The inflexion point of the A. aurita was found to convert an inner bell trajectory into an outer one during contraction which assists the thrust production. A biomimetic robot inspired by Cyanea capillata, termed as "Cyro", was developed to meet the functional demands of underwater surveillance in defense and civilian applications. The design of Cyro required kinematics of large C. capillata which are elusive creatures. Obtaining accurate kinematic data of animals is essential for many biological studies and bio-inspired engineering applications. Many animals such as the C. capillata however, are either too large or too delicate to transport to controlled environments where accurate kinematic data can easily be obtained. Often, in situ recordings are the only means available but are often subject to multi-axis motion and relative magnification changes with time, which lead to large discrepancies in animal kinematics. In Chapter 5, techniques to compensate for magnification and body rotation of animal footage were developed. A background reference point and animal dimensions were used to account for magnification. A linear fit of body points were used to measure body rotation. These techniques help resolve animal kinematics from in situ video footage. The techniques were applied to a large jellyfish, Cyanea capillata, swimming in ocean waters. The bell kinematics were captured by digitizing exumbrella profiles for two full swimming cycles. Magnification was accounted for by tracking a reference point on the ocean floor and by tracking the C. capillata exumbrella arclength in order to have a constant scale through the swimming cycles. A linear fit of the top bell portion was used to find the body angle with respect to the camera coordinate system. Bell margin trajectories over two swimming cycles confirm the accuracy of the correction techniques. The corrected profiles were filtered and interpolated to provide a set of time-dependent points along the bell. The ability to use in situ footage with significant multi-axis motion provides an opportunity to analyze previously impractical footage for gaining a better understanding of large or delicate organisms. The swimming kinematics of the C. capillata were analyzed after extracting the required kinematics from the in situ video. A discrete model of the exumbrella was developed and used to analyze the kinematics. The exumbrella discretization was done using three different methods. The first method consists of analyzing the animal anatomy for structural and mechanical features. The second method consists of analyzing the bell kinematics for areas of highest deformation over time. The third method consists of optimizing node locations that can provide minimal error with comparison to the digitized profiles. Two kinematic models of the C. capillata swimming motion were developed by fitting Fourier series to the discretized segments and angles formed by each segment. The four-segment anatomical kinematic model was used to analyze the bell kinematics of the C. capillata. It was found that the bell does not deform uniformly over time with segments lagging behind others. Hysteresis between contraction and relaxation was also present through most of the exumbrella. The bell margin had the largest hysteresis with an outer path during contraction and inner path during relaxation. The subumbrella volume was approximated based on the exumbrella kinematics and was found to increase during contraction. Cyro was designed to mimic the morphology and swimming mechanism of the natural counterpart. The body of the vehicle consists of a rigid support structure with linear DC motors which actuate eight mechanical arms. The mechanical arms in conjunction with artificial mesoglea create the hydrodynamic force required for propulsion. The full vehicle measures 170 cm in diameter and has a total mass of 76 kg. An analytical model of the mechanical arm kinematics was developed. The analytical and experimental bell kinematics were analyzed and compared to the C. capillata. Cyro reached the water surface untethered and autonomously from a depth of 182 cm in five actuation cycles. It achieved an average velocity of 8.47 cm/s while consuming an average power of 70 W. A thrust stand was developed to calculate the thrust directly from a single bell segment yielding an average thrust of 27.9 N for the whole vehicle. Steady state velocity during Cyro's swimming test was not reached but the measured performance during its last swim cycle resulted in a cost of transport of 10.9 J/kg m and total efficiency of 3%. It was observed that a passive flexible margin or flap, drastically increases the performance of the Robojelly. The effects of flap length and geometry on Robojelly were analyzed using PIV. The flap was defined as the bell section which is located between the flexion point and bell margin. The flexion point was established as the location where the bell undergoes a significant change compliance and therefore in slope. The flap was analyzed in terms of its kinematics and hydrodynamic contribution. An outer trajectory is achieved by the flap margin during contraction while an inner trajectory is achieved during relaxation. The flap kinematics was found to be replicable using a passive flexible structure. Flaps of constant cross section and varying lengths were put on the robotic vehicle to conduct a systematic parametric study. Robojelly's swimming performance was tested with and without a flap. This revealed a thrust increase 1340% with the addition of a flap. Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) to analyze the change in vortex structures as a function of flap length. The robot input parameters stayed constant over the different configurations tested thus maintaining a near constant power consumption. Non-dimensional circulation results show a dependence on flap kinematics and geometry. The robot was approximated as a series of pitching panels circularly oriented around its apex. The first circulation peak of the pitching panel approximation revealed a normalized standard deviation of 0.23. A piston apparatus was designed and built to test different flexible margin configurations. This apparatus allow the isolation of the flap parameters and remove the uncertainties coming from the robotic vehicle.
- Determination of Three Dimensional Time Varying Flow StructuresRaben, Samuel Gillooly (Virginia Tech, 2013-09-10)Time varying flow structures are involved in a large percentage of fluid flows although there is still much unknown regarding their behavior. With the development of high spatiotemporal resolution measurement systems it is becoming more feasible to measure these complex flow structures, which in turn will lead to a better understanding of their impact. One method that has been developed for studying these flow structures is finite time Lyapunov exponents (FTLEs). These exponents can reveal regions in the fluid, referred to as Lagragnian coherent structures (LCSs), where fluid elements diverge or attract. Better knowledge of how these time varying structures behave can greatly impact a wide range of applications, from aircraft design and performance, to an improved understanding of mixing and transport in the human body. This work provides the development of new methodologies for measuring and studying three-dimensional time varying structures. Provided herein is a method to improve replacement of erroneous measurements in particle image velocimetry data, which leads to increased accuracy in the data. Also, a method for directly measuring the finite time Lyapunov exponents from particle images is developed, as well as an experimental demonstration in a three-dimensional flow field. This method takes advantage of the information inherently contained in these images to improve accuracy and reduce computational requirements. Lastly, this work provides an in depth look at the flow field for developing wall jets across a wide range of Reynolds numbers investigating the mechanisms that contribute to their development.
- Development and application of a dispersed two-phase flow capability in a general multi-block Navier Stokes solverShah, Anant Pankaj (Virginia Tech, 2005-12-06)Gas turbines for military applications, when operating in harsh environments like deserts often encounter unexpected operation faults. Such performance deterioration of the gas turbine decreases the mission readiness of the Air Force and simultaneously increases the maintenance costs. Some of the major factors responsible for the reduced performance are ingestion of debris during take off and landing, distorted intake flows during low altitude maneuvers, and hot gas ingestion during artillery firing. The focus of this thesis is to study ingestion of debris; specifically sand. The region of interest being the internal cooling ribbed duct of the turbine blade. The presence of serpentine passages and strong localized cross flow components makes this region prone to deposition, erosion, and corrosion (DEC) by sand particles. A Lagrangian particle tracking technique was implemented in a generalized coordinate multi-block Navier-Stokes solver in a distributed parallel framework. The developed algorithm was validated by comparing the computed particle statistics for 28 microns lycopodium, 50 microns glass, and 70 microns copper with available data [2] for a turbulent channel flow at Ret=180. Computations were performed for a particle-laden turbulent flow through a stationary ribbed square duct (rib pitch / rib height = 10, rib height / hydraulic diameter = 0.1) using an Eulerian-Lagrangian framework. Particle sizes of 10, 50, and 100 microns with response times (normalized by friction velocity and hydraulic diameter) of 0.06875, 1.71875, and 6.875 respectively are considered. The calculations are performed for a nominal bulk Reynolds number of 20,000 under fully developed conditions. The carrier phase was solved using Large Eddy Simulation (LES) with Dynamic Smagorinsky Model [1]. Due to low volume fraction of the particles, one-way fluid-particle coupling was assumed. It is found that at any given instant in time about 40% of the total number of 10 micron particles are concentrated in the vicinity (within 0.05 Dh) of the duct surfaces, compared to 26% of the 50 and 100 micron particles. The 10 micron particles are more sensitive to the flow features and are prone to preferential concentration more so than the larger particles. At the side walls of the duct, the 10 micron particles exhibit a high potential to erode the region in the vicinity of the rib due to secondary flow impingement. The larger particles are more prone to eroding the area between the ribs and towards the center of the duct. At the ribbed walls, while the 10 micron particles exhibit a fairly uniform propensity for erosion, the 100 micron particles show a much higher tendency to erode the surface in the vicinity of the reattachment region. The rib face facing the flow is by far the most susceptible to erosion and deposition for all particle sizes. While the top of the rib does not exhibit a large propensity to be eroded, the back of the rib is as susceptible as the other duct surfaces because of particles which are entrained into the recirculation zone behind the rib.
- Development of a Direct-Measurement Thin-Film Heat Flux ArrayEwing, Jerrod Albert (Virginia Tech, 2006-12-11)A new thin film heat flux array (HFA) was designed and constructed using a series of nickel/copper thermocouples deposited onto a thin Kapton® polyimide film. The HFA is capable of withstanding temperatures up to 300 °C and produces signals of 42 μV/(W/cm²). As a result of its thin film construction, the HFA has a first order time constant of 32 ms. Calibrations were completed to determine the gage's output as well as its time response. In order to measure the signal from the HFA amplifiers were designed to increase the magnitude of the voltage output. An example case is given where the HFA is used in an experiment to correlate time-resolved heat flux and velocities.