Browsing by Author "Wang, Juntao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Chern-Simons invariants and heterotic superpotentialsAnderson, Lara B.; Gray, James A.; Lukas, Andre; Wang, Juntao (2020-09-22)The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.
- Free quotients of favorable Calabi-Yau manifoldsGray, James; Wang, Juntao (2022-07-19)Non-simply connected Calabi-Yau threefolds play a central role in the study of string compactifications. Such manifolds are usually described by quotienting a simply connected Calabi-Yau variety by a freely acting discrete symmetry. For the Calabi-Yau threefolds described as complete intersections in products of projective spaces, a classification of such symmetries descending from linear actions on the ambient spaces of the varieties has been given in [16]. However, which symmetries can be described in this manner depends upon the description that is being used to represent the manifold. In [24] new, favorable, descriptions were given of this data set of Calabi-Yau threefolds. In this paper, we perform a classification of cyclic symmetries that descend from linear actions on the ambient spaces of these new favorable descriptions. We present a list of 129 symmetries/non-simply connected Calabi-Yau threefolds. Of these, at least 33, and potentially many more, are topologically new varieties.
- Spectral and Superpotential Effects in Heterotic CompactificationsWang, Juntao (Virginia Tech, 2021-07-16)In this dissertation we study several topics related to the geometry and physics of heterotic string compactification. After an introduction to some of the basic ideas of this field, we review the heterotic line bundle standard model construction and a complex structure mod- uli stabilization mechanism associated to certain hidden sector gauge bundles. Once this foundational material has been presented, we move on to the original research of this disser- tation. We present a scan over all known heterotic line bundle standard models to examine the frequency with which the particle spectrum is forced to change, or "jump," by the hidden sector moduli stabilization mechanism just mentioned. We find a significant percentage of forced spectrum jumping in those models where such a change of particle content is possible. This result suggests that one should consider moduli stabilization concurrently with model building, and that failing to do so could lead to misleading results. We also use state of the art techniques to study Yukawa couplings in these models. We find that a large portion of Yukawa couplings which naively would be expected to be non-zero actually vanish due to certain topological selection rules. There is no known symmetry which is responsible for this vanishing. In the final part of this dissertation, we study the Chern-Simons contribution to the superpotential of heterotic theories. This quantity is very important in determining the vacuum stability of these models. By explicitly building real bundle morphisms between vec- tor bundles over Calabi-Yau manifolds, we show that this contribution to the superpotential vanishes in many cases. However, by working with more complicated, and realistic geome- tries, we also present examples where the Chern-Simons contribution to the superpotential is non-zero, and indeed fractional.