Browsing by Author "Webb, Emily M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitisLiu, Jinny L.; Zabetakis, Dan; Gardner, Christina L.; Burke, Crystal W.; Glass, Pamela J.; Webb, Emily M.; Shriver-Lake, Lisa C.; Anderson, George P.; Weger-Lucarelli, James; Goldman, Ellen R. (Nature Portfolio, 2022-01-13)Venezuelan equine encephalitis virus (VEEV) is a mosquito borne alphavirus which leads to high viremia in equines followed by lethal encephalitis and lateral spread to humans. In addition to naturally occurring outbreaks, VEEV is a potential biothreat agent with no approved human vaccine or therapeutic currently available. Single domain antibodies (sdAb), also known as nanobodies, have the potential to be effective therapeutic agents. Using an immune phage display library derived from a llama immunized with an equine vaccine that included inactivated VEEV, five sdAb sequence families were identified that showed varying ability to neutralize VEEV. One of the sequence families had been identified previously in selections against chikungunya virus, a related alphavirus of public health concern. A key advantage of sdAb is the ability to optimize properties such as neutralization capacity through protein engineering. Neutralization of VEEV was improved by two orders of magnitude by genetically linking sdAb. One of the bivalent constructs showed effective neutralization of both VEEV and chikungunya virus. Several of the bivalent constructs neutralized VEEV in cell-based assays with reductions in the number of plaques by 50% at protein concentrations of 1 ng/mL or lower, making future evaluation of their therapeutic potential compelling.
- Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potentialWebb, Emily M.; Azar, Sasha R.; Haller, Sherry L.; Langsjoen, Rose M.; Cuthbert, Candace E.; Ramjag, Anushka T.; Luo, Huanle; Plante, Kenneth; Wang, Tian; Simmons, Graham; Carrington, Christine V. F.; Weaver, Scott C.; Ross, Shannan L.; Auguste, A. Jonathan (Springer Nature, 2019)Mayaro virus (MAYV) causes an acute febrile illness similar to that produced by chikungunya virus (CHIKV), an evolutionary relative in the Semliki Forest virus complex of alphaviruses. MAYV emergence is typically sporadic, but recent isolations and outbreaks indicate that the virus remains a public health concern. Given the close phylogenetic and antigenic relationship between CHIKV and MAYV, and widespread distribution of CHIKV, we hypothesized that prior CHIKV immunity may affect MAYV pathogenesis and/or influence its emergence potential. We pre-exposed immunocompetent C57BL/6 and immunocompromised A129 or IFNAR mice to wild-type CHIKV, two CHIKV vaccines, or a live-attenuated MAYV vaccine, and challenged with MAYV. We observed strong cross-protection against MAYV for mice pre-exposed to wild-type CHIKV, and moderately but significantly reduced cross-protection from CHIKV-vaccinated animals. Immunity to other alphavirus or flavivirus controls provided no protection against MAYV disease or viremia. Mechanistic studies suggested that neutralizing antibodies alone can mediate this protection, with T-cells having no significant effect on diminishing disease. Finally, human sera obtained from naturally acquired CHIKV infection cross-neutralized MAYV at high titers in vitro. Altogether, our data suggest that CHIKV infection can confer cross-protective effects against MAYV, and the resultant reduction in viremia may limit the emergence potential of MAYV.
- Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virusWebb, Emily M.; Compton, Austin; Rai, Pallavi; Chuong, Christina; Paulson, Sally L.; Tu, Zhijian; Weger-Lucarelli, James (Frontiers, 2023-06-12)Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
- Noble Metal Organometallic Complexes Display Antiviral Activity against SARS-CoV-2Chuong, Christina; DuChane, Christine M.; Webb, Emily M.; Rai, Pallavi; Marano, Jeffrey M.; Bernier, Chad M.; Merola, Joseph S.; Weger-Lucarelli, James (MDPI, 2021-05-25)SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. To this end, we evaluated a new class of organometallic complexes as potential antivirals. Our findings demonstrate that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(1,3-dicyclohexylimidazol-2-ylidene)Cl2 (complex 2) and Cp*Rh(dipivaloylmethanato)Cl (complex 4), have direct virucidal activity against SARS-CoV-2. Subsequent in vitro testing suggests that complex 4 is the more stable and effective complex and demonstrates that both 2 and 4 have low toxicity in Vero E6 and Calu-3 cells. The results presented here highlight the potential application of organometallic complexes as antivirals and support further investigation into their activity.
- Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain AntibodyLiu, Jinny L.; Webb, Emily M.; Zabetakis, Dan; Burke, Crystal W.; Gardner, Christina L.; Glass, Pamela J.; Legler, Patricia M.; Weger-Lucarelli, James; Anderson, George P.; Goldman, Ellen R. (2021-01-28)A single domain antibody (clone CC3) previously found to neutralize a vaccine strain of the chikungunya virus (PRNT50 = 2. 5 ng/mL) was found to be broadly neutralizing. Clone CC3 is not only able to neutralize a wild-type (WT) strain of chikungunya virus (CHIKV), but also neutralizes WT strains of Mayaro virus (MAYV) and Ross River virus (RRV); both arthralgic, Old World alphaviruses. Interestingly, CC3 also demonstrated a degree of neutralizing activity against the New World alphavirus, Venezuelan equine encephalitis virus (VEEV); albeit both the vaccine strain, TC-83, and the parental, WT Trinidad donkey strain had PRNT50 values similar to 1,000-fold higher than that of CHIKV. However, no neutralization activity was observed with Western equine encephalitis virus (WEEV). Ten CC3 variants designed to possess a range of isoelectric points, both higher and lower, were constructed. This approach successfully identified several lower pI mutants which possessed improved thermal stabilities by as much as 10 degrees C over the original CC3 (T-m = 62 degrees C), and excellent refolding abilities while maintaining their capacity to bind and neutralize CHIKV.