Browsing by Author "Weidemann, Douglas E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Coordination of rhythmic RNA synthesis and degradation orchestrates 24-and 12-h RNA expression patterns in mouse fibroblastsUnruh, Benjamin A.; Weidemann, Douglas E.; Miao, Lin; Kojima, Shihoko (National Academy of Sciences, 2024)Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and posttranscriptional mechanisms are considered important to drive rhythmic RNA expression; however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24-h RNA rhythms, while rhythmic degradation is more important for 12-h RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and the interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24-and 12-h RNA rhythms in mouse fibroblasts.
- The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-PoissonianWeidemann, Douglas E.; Holehouse, James; Singh, Abhyudai; Grima, Ramon; Hauf, Silke (American Association for the Advancement of Science, 2023-08-09)Gene expression inherently gives rise to stochastic variation (“noise”) in the production of gene products. Minimizing noise is crucial for ensuring reliable cellular functions. However, noise cannot be suppressed below a certain intrinsic limit. For constitutively expressed genes, this limit is typically assumed to be Poissonian noise, wherein the variance in mRNA numbers is equal to their mean. Here, we demonstrate that several cell division genes in fission yeast exhibit mRNA variances significantly below this limit. The reduced variance can be explained by a gene expression model incorporating multiple transcription and mRNA degradation steps. Notably, in this sub-Poissonian regime, distinct from Poissonian or super-Poissonian regimes, cytoplasmic noise is effectively suppressed through a higher mRNA export rate. Our findings redefine the lower limit of eukaryotic gene expression noise and uncover molecular requirements for achieving ultralow noise, which is expected to be important for vital cellular functions.
- Mitotic checkpoint gene expression is tuned by codon usage biasEsposito, Eric; Weidemann, Douglas E.; Rogers, Jessie M.; Morton, Claire M.; Baybay, Erod Keaton; Chen, Jing; Hauf, Silke (Wiley, 2022-08-01)The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+, their short mRNA half-lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1+ mRNA has a short half-life despite a higher frequency of optimal codons, and despite the lack of known RNA-destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co-translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine-tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.