Browsing by Author "Xiong, Yunjie"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- A BIM-based Interoperability Platform in Support of Building Operation and Energy ManagementXiong, Yunjie (Virginia Tech, 2020-03-18)Building energy efficiency is progressively becoming a crucial topic in the architecture, engineering, and construction (AEC) sector. Energy management tools have been developed to promise appropriate energy savings. Building energy simulation (BES) is a tool mainly used to analyze and compare the energy consumption of various design/operation scenarios, while building automation systems (BAS) works as another energy management tool to monitor, measure and collect operational data, all in an effort to optimize energy consumption. By integrating the energy simulated data and actual operational data, the accuracy of a building energy model can be increased while the calibrated energy model can be applied as a benchmark for guiding the operational strategies. This research predicted that building information modeling (BIM) would link BES and BAS by acting as a visual model and a database throughout the lifecycle of a building. The intent of the research was to use BIM to document energy-related information and to allow its exchange between BES and BAS. Thus, the energy-related data exchange process would be simplified, and the productive efficiency of facility management processes would increase. A systematic literature review has been conducted in investigating the most popular used data formats and data exchange methods for the integration of BIM/BES and BAS, the results showed the industry foundation classes (IFC) was the most common choice for BIM tools mainly and database is a key solution for managing huge actual operational datasets, which was a reference for the next step in research. Then a BIM-based framework was proposed to supporting the data exchange process among BIM/BES/BAS. 4 modules including BIM Module, Operational Data Module, Energy Simulation Module and Analysis and Visualization Module with an interface were designed in the framework to document energy-related information and to allow its exchange between BES and BAS. A prototype of the framework was developed as a platform and a case study of an entire office suite was conducted using the platform to validate this framework. The results showed that the proposed framework enables automated or semi-automated multiple-model development and data analytics processes. In addition, the research explored how BIM can enhance the application of energy modeling during building operation processes as a means to improve overall energy performance and facility management productivity.