Browsing by Author "Yan, Guannan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Real-Time and Efficient Traffic Information Acquisition via Pavement Vibration IoT Monitoring SystemYe, Zhoujing; Yan, Guannan; Wei, Ya; Zhou, Bin; Li, Ning; Shen, Shihui; Wang, Linbing (MDPI, 2021-04-10)Traditional road-embedded monitoring systems for traffic monitoring have the disadvantages of a short life, high energy consumption and data redundancy, resulting in insufficient durability and high cost. In order to improve the durability and efficiency of the road-embedded monitoring system, a pavement vibration monitoring system is developed based on the Internet of things (IoT). The system includes multi-acceleration sensing nodes, a gateway, and a cloud platform. The key design principles and technologies of each part of the system are proposed, which provides valuable experience for the application of IoT monitoring technology in road infrastructures. Characterized by low power consumption, distributed computing, and high extensibility properties, the pavement vibration IoT monitoring system can realize the monitoring, transmission, and analysis of pavement vibration signal, and acquires the real-time traffic information. This road-embedded system improves the intellectual capacity of road infrastructure and is conducive to the construction of a new generation of smart roads.
- A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain MonitoringMeng, Lingjian; Wang, Linbing; Hou, Yue; Yan, Guannan (MDPI, 2017-10-19)The accumulated irreversible deformation in pavement under repeated vehicle loadings will cause fatigue failure of asphalt concrete. It is necessary to monitor the mechanical response of pavement under load by using sensors. Previous studies have limitations in modulus accommodation between the sensor and asphalt pavement, and it is difficult to achieve the distributed monitoring goal. To solve these problems, a new type of low modulus distributed optical fiber sensor (DOFS) for asphalt pavement strain monitoring is fabricated. Laboratory experiments have proved the applicability and accuracy of the newly-designed sensor. This paper presents the results of the development.