Browsing by Author "Zaitlin, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Extensive phenotypic diversity in the cultivated Florist’s Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder populationHasing, Tomas; Rinaldi, Elijah; Manrique, Silvia; Colombo, Lucia; Haak, David C.; Zaitlin, David; Bombarely, Aureliano (Wiley, 2019-08-19)Domesticated plants are essential for agriculture and human societies. Hence, understanding the processes of domestication will be crucial as we strive for more efficient crops and improvements to plants that benefit humankind in other ways. Here, we study the ornamental plant Sinningia speciosa, and reveal that despite the incredible variety found in domesticated varieties (e.g., in flower colour and form), they are all derived from a single founder population near Rio de Janeiro, Brazil. Knowledge of the domestication of horticultural plants is scarce and given its small, low‐complexity genome, and ease of cultivation, we suggest that S. speciosa is a good model for studying genomic variation during domestication.
- Genomic Reconstruction of the Domestication History of Sinningia speciosa (Lodd.) Hiern, and the Development of a Novel Genotyping ApproachHasing Rodriguez, Tomas Nestor (Virginia Tech, 2019-11-12)Most staple food crops were domesticated thousands of years ago through independent processes across different regions of the world. Studies of the history of such crops have been essential to our understanding of plant domestication as a process that started with the collection of wild material and continued with subsequent propagation, cultivation, and selection under human care. Domestication often involves a complex genetic structure with contributions from multiple founder populations, interspecific hybridization, chromosomal introgressions, and polyploidization events that occurred hundreds to thousands of years earlier. Such intricate origins complicate the systematic study of the sources of phenotypic variation. The analysis of recently domesticated, non-traditional, non-model species, such as Sinningia speciosa (Gesneriaceae), can expand the knowledge that we have on phenotypic variation under domestication, and help us to comprehend modern patterns of plant domestication and to broaden our understanding of the general trends. S. speciosa is commonly known as the 'florist's gloxinia', and it has been cultivated for 200 years as an ornamental houseplant. In our genomic study of S. speciosa, we examined an extensive diversity panel consisting of 115 individuals that included different species in the genus, wild representatives, and cultivated accessions, as well as 150 individuals from an F2 segregating population. Our analyses revealed that all of the domesticated varieties are derived from a single founder population that originated in or near the city of Rio de Janeiro in Brazil. We identified two loci associated with domesticated traits (flower symmetry and color) and did not detect any major hybridization or polyploidization events that could have contributed to the rapid increase in phenotypic diversity. Our findings, in conjunction with other features such as a small, low-complexity genome, ease of cultivation, and rapid generation time, makes this species an attractive model for the study of genomic variation under domestication. Basic research on non-model organisms with low economic importance is uncommon but necessary to understand the world from a broader perspective. In such cases, reduced representation approaches like Genotyping-by-Sequencing (GBS) are efficient low-cost alternatives to whole genome resequencing. However, most of these technologies are subject to patent protection, licensing processes, and fees that constrain genomic research for small non-profit research organizations. We have designed a protocol to construct reduced representation libraries from genomic DNA. Our approach, called Targeted Amplification of Scattered Sites (TASS), deviates from the traditional digestion-ligation-amplification process that is the subject of intellectual property that protects most current methods. Instead, TASS relies on 1) targeting and duplicating scattered regions in the genome by annealing and expanding long tail primers with short annealing sites, and 2) amplifying these regions using primers that are complementary to the added overhangs. At the moment GBS is more consistent and delivers more variants than TASS. However, we have established a foundation on which further optimization can produce an accessible, easy to implement, high-throughput genotyping approach.
- Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing dataSoorni, Aboozar; Haak, David C.; Zaitlin, David; Bombarely, Aureliano (Biomed Central, 2017-01-07)Background The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present. Results We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and then performs read correction and de novo assembly using Sprai. Organelle-PBA completes the assembly process with the additional step of scaffolding by SSPACE-LongRead. The program then detects the chloroplast inverted repeats and reassembles and re-orients the assembly based on the organelle origin of the reference. We have evaluated the performance of the software using PacBio reads from different species, read coverage, and reference genomes. Finally, we present the assembly of two novel chloroplast genomes from the species Picea glauca (Pinaceae) and Sinningia speciosa (Gesneriaceae). Conclusion Organelle-PBA is an easy-to-use Perl-based software pipeline that was written specifically to assemble mitochondrial and chloroplast genomes from whole genome PacBio reads. The program is available at https://github.com/aubombarely/Organelle_PBA