Browsing by Author "Zemcov, M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- HerMES: a deficit in the surface brightness of the cosmic infrared background due to galaxy cluster gravitational lensingZemcov, M.; Blain, A.; Cooray, A.; Bethermin, M.; Bock, J.; Clements, D. L.; Conley, A.; Conversi, L.; Dowell, C. D.; Farrah, D.; Glenn, J.; Griffin, M.; Halpern, M.; Jullo, E.; Kneib, J. P.; Marsden, G.; Nguyen, H. T.; Oliver, S. J.; Richard, J.; Roseboom, I. G.; Schulz, B.; Scott, D.; Shupe, D. L.; Smith, A. J.; Valtchanov, I.; Viero, M.; Wang, L.; Wardlow, J. (IOP Publishing Ltd., 2013-06)We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I-250 mu m > 0.69(-0.03)(+0.03)(stat.)(-0.06)(+0.11)(sys.) MJy sr(-1), with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.
- HerMES: candidate gravitationally lensed galaxies and lensing statistics at submillimeter wavelengthsWardlow, J. L.; Cooray, A.; De Bernardis, F.; Amblard, A.; Arumugam, V.; Aussel, H.; Baker, A. J.; Bethermin, M.; Blundell, R.; Bock, J.; Boselli, A.; Bridge, C. R.; Buat, V.; Burgarella, D.; Bussmann, R. S.; Cabrera-Lavers, A.; Calanog, J. A.; Carpenter, J. M.; Casey, C. M.; Castro-Rodriguez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Cox, P.; Dowell, C. D.; Dye, S.; Eales, S.; Farrah, D.; Ferrero, P.; Franceschini, A.; Frayer, D. T.; Frazer, C.; Fu, H.; Gavazzi, R.; Glenn, J.; Solares, E. A. G.; Griffin, M.; Gurwell, M. A.; Harris, A. I.; Hatziminaoglou, E.; Hopwood, R.; Hyde, A.; Ibar, E.; Ivison, R. J.; Kim, S.; Lagache, G.; Levenson, L.; Marchetti, L.; Marsden, G.; Martinez-Navajas, P.; Negrello, M.; Neri, R.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Page, M. J.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Perez-Fournon, I.; Pohlen, M.; Riechers, D. A.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Schulz, B.; Scott, D.; Scoville, N.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Streblyanska, A.; Strom, A.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Vieira, J. D.; Viero, M.; Wang, L.; Xu, C. K.; Yan, L.; Zemcov, M. (IOP Publishing Ltd., 2013-01)We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 deg(2) of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14 +/- 0.04 deg(-2). The selected sources have 500 mu m flux densities (S-500) greater than 100 mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31 +/- 0.06 deg(-2)) gravitationally lensed SMG candidates with S-500 = 80-100 mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32%-74% of our S-500 >= 100 mJy candidates are strongly gravitationally lensed (mu >= 2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S-500 = 100 mJy are magnified by factors of similar to 9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500 mu m flux densities less than 30 mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 mu m. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of similar to 0 ''.01 in the source plane.
- HerMES: candidate high-redshift galaxies discovered with Herschel/SPIREDowell, C. D.; Conley, A.; Glenn, J.; Arumugam, V.; Asboth, V.; Aussel, H.; Bertoldi, F.; Bethermin, M.; Bock, J.; Boselli, A.; Bridge, C. R.; Buat, V.; Burgarella, D.; Cabrera-Lavers, A.; Casey, C. M.; Chapman, S. C.; Clements, D. L.; Conversi, L.; Cooray, A.; Dannerbauer, H.; De Bernardis, F.; Ellsworth-Bowers, T. P.; Farrah, D.; Franceschini, A.; Griffin, M.; Gurwell, M. A.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Laporte, N.; Marchetti, L.; Martinez-Navajas, P.; Marsden, G.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Page, M. J.; Papageorgiou, A.; Pearson, C. P.; Petitpas, G.; Perez-Fournon, I.; Pohlen, M.; Riechers, D. A.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sayers, J.; Schulz, B.; Scott, D.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Streblyanska, A.; Symeonidis, M.; Vaccari, M.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Xu, C. K.; Zemcov, M. (IOP Publishing Ltd., 2014-01)We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 mu m flux densities to search for red sources. We apply this method to 21 deg(2) of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e. g., 850 mu m) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S-500 (mu m) >= 30 mJy), red Herschel sources is 3.3 +/- 0.8 deg(-2). This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z similar to 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction.
- HerMES: cosmic infrared background anisotropies and the clustering of dusty star-forming galaxiesViero, M. P.; Wang, L.; Zemcov, M.; Addison, G.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Bock, J.; Boselli, A.; Buat, V.; Burgarella, D.; Casey, C. M.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; De Zotti, G.; Dowell, C. D.; Farrah, D.; Franceschini, A.; Glenn, J.; Griffin, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Lagache, G.; Levenson, L.; Marchetti, L.; Marsden, G.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Page, M. J.; Papageorgiou, A.; Pearson, C. P.; Perez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Schulz, B.; Scott, D.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Symeonidis, M.; Vaccari, M.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; Xu, C. K. (IOP Publishing Ltd., 2013-07)We present measurements of the auto-and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 mu m (1200, 860, and 600 GHz) from observations totaling similar to 70 deg(2) made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy delta I/I = 14% +/- 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k(theta) similar to 0.10-0.12 arcmin(-1) (l similar to 2160-2380), from 250 to 500 mu m. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources-suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z similar to 1-3, is log( M-peak/M-circle dot) similar to 12.1 +/- 0.5, and that the minimum halo mass to host infrared galaxies is log(Mmin/M-circle dot) similar to 10.1 +/- 0.6.
- HerMES: the contribution to the cosmic infrared background from galaxies selected by mass and redshiftViero, M. P.; Moncelsi, L.; Quadri, R. F.; Arumugam, V.; Assef, R. J.; Bethermin, M.; Bock, J.; Bridge, C. R.; Casey, C. M.; Conley, A.; Cooray, A.; Farrah, D.; Glenn, J.; Heinis, S.; Ibar, E.; Ikarashi, S.; Ivison, R. J.; Kohno, K.; Marsden, G.; Oliver, S. J.; Roseboom, I. G.; Schulz, B.; Scott, D.; Serra, P.; Vaccari, M.; Vieira, J. D.; Wang, L.; Wardlow, J.; Wilson, G. W.; Yun, M. S.; Zemcov, M. (IOP Publishing Ltd., 2013-12)We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (similar to 35.7 arcmin(-2)) K-selected sources (K-AB < 24.0) split according to their rest-frame U-V versus V-J colors into 72,216 star-forming and 9034 quiescent galaxies, on maps from Spitzer/MIPS (24 mu m), Herschel/PACS (100, 160 mu m), Herschel/SPIRE (250, 350, 500 mu m), and AzTEC (1100 mu m). The fraction of the CIB resolved by our catalog is (69% +/- 15%) at 24 mu m, (78% +/- 17%) at 70 mu m, (58% +/- 13%) at 100 mu m, (78% +/- 18%) at 160 mu m, (80% +/- 17%) at 250 mu m, (69% +/- 14%) at 350 mu m, (65% +/- 12%) at 500 mu m, and (45% +/- 8%) at 1100 mu m. Of that total, about 95% originates from star-forming galaxies, while the remaining 5% is from apparently quiescent galaxies. The CIB at lambda less than or similar to 200 mu m appears to be sourced predominantly from galaxies at z less than or similar to 1, while at. greater than or similar to 200 mu m the bulk originates from 1 less than or similar to z less than or similar to 2. Galaxies with stellar masses log(M/M-circle dot) = 9.5-11 are responsible for the majority of the CIB, with those in the log(M/M-circle dot) = 9.5-10 bin contributing mostly at lambda < 250 mu m, and those in the log(M/M circle dot) = 10-11 bin dominating at lambda > 350 mu m. The contribution from galaxies in the log(M/M-circle dot) = 9.0-9.5 (lowest) and log(M/M-circle dot) = 11.0-12.0 (highest) stellar-mass bins contribute the least-both of order 5%-although the highest stellar-mass bin is a significant contributor to the luminosity density at z greater than or similar to 2. The luminosities of the galaxies responsible for the CIB shifts from combinations of "normal" and luminous infrared galaxies (LIRGs) at lambda less than or similar to 160 mu m, to LIRGs at 160 less than or similar to lambda less than or similar to 500 mu m, to finally LIRGs and ultra-luminous infrared galaxies at lambda greater than or similar to 500 mu m. Stacking analyses were performed using SIMSTACK, a novel algorithm designed to account for possible biases in the stacked flux density due to clustering. It is made available to the public at www.astro.caltech.edu/similar to viero/viero_homepage/toolbox.html.
- HerMES: the far-infrared emission from dust-obscured galaxiesCalanog, J. A.; Wardlow, J.; Fu, H.; Cooray, A.; Assef, R. J.; Bock, J.; Casey, C. M.; Conley, A.; Farrah, D.; Ibar, E.; Kartaltepe, J.; Magdis, G. E.; Marchetti, L.; Oliver, S. J.; Perez-Fournon, I.; Riechers, D. A.; Rigopoulou, D.; Roseboom, I. G.; Schulz, B.; Scott, D.; Symeonidis, M.; Vaccari, M.; Viero, M.; Zemcov, M. (IOP Publishing Ltd., 2013-09)Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z similar to 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg(2) of the Cosmic Evolution Survey. The 3077 DOGs have < z > = 1.9 +/- 0.3 and are selected from 24 mu m and r(+) observations using a color cut of r(+) -[24] >= 7.5 (AB mag) and S-24 >= 100 mu Jy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 mu m (>= 3 sigma). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 +/- 0.4) x 10(12) L-circle dot and (0.77 +/- 0.08) x 10(12) L-circle dot, and dust temperatures of (33 +/- 7) K and (37 +/- 5) K, respectively. The IR luminosity function for DOGs with S-24 >= 100 mu Jy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 mu m detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S-24 >= 100 mu Jy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z similar to 2.