Browsing by Author "Zhang, Qisheng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Autonomous Cyber Defense for Resilient Cyber-Physical SystemsZhang, Qisheng (Virginia Tech, 2024-01-09)In this dissertation research, we design and analyze resilient cyber-physical systems (CPSs) under high network dynamics, adversarial attacks, and various uncertainties. We focus on three key system attributes to build resilient CPSs by developing a suite of the autonomous cyber defense mechanisms. First, we consider network adaptability to achieve the resilience of a CPS. Network adaptability represents the network ability to maintain its security and connectivity level when faced with incoming attacks. We address this by network topology adaptation. Network topology adaptation can contribute to quickly identifying and updating the network topology to confuse attacks by changing attack paths. We leverage deep reinforcement learning (DRL) to develop CPSs using network topology adaptation. Second, we consider the fault-tolerance of a CPS as another attribute to ensure system resilience. We aim to build a resilient CPS under severe resource constraints, adversarial attacks, and various uncertainties. We chose a solar sensor-based smart farm as one example of the CPS applications and develop a resource-aware monitoring system for the smart farms. We leverage DRL and uncertainty quantification using a belief theory, called Subjective Logic, to optimize critical tradeoffs between system performance and security under the contested CPS environments. Lastly, we study system resilience in terms of system recoverability. The system recoverability refers to the system's ability to recover from performance degradation or failure. In this task, we mainly focus on developing an automated intrusion response system (IRS) for CPSs. We aim to design the IRS with effective and efficient responses by reducing a false alarm rate and defense cost, respectively. Specifically, We build a lightweight IRS for an in-vehicle controller area network (CAN) bus system operating with DRL-based autonomous driving.
- Uncertainty-Aware Reward-based Deep Reinforcement Learning for Intent Analysis of Social Media InformationGuo, Zhen; Zhang, Qi; An, Xinwei; Zhang, Qisheng; Josang, Audun; Kaplan, Lance M.; Chen, Feng; Jeong, Dong H.; Cho, Jin-Hee (2023-02-13)Due to various and serious adverse impacts of spreading fake news, it is often known that only people with malicious intent would propagate fake news. However, it is not necessarily true based on social science studies. Distinguishing the types of fake news spreaders based on their intent is critical because it will effectively guide how to intervene to mitigate the spread of fake news with different approaches. To this end, we propose an intent classification framework that can best identify the correct intent of fake news. We will leverage deep reinforcement learning (DRL) that can optimize the structural representation of each tweet by removing noisy words from the input sequence when appending an actor to the long short-term memory (LSTM) intent classifier. Policy gradient DRL model (e.g., REINFORCE) can lead the actor to a higher delayed reward. We also devise a new uncertainty-aware immediate reward using a subjective opinion that can explicitly deal with multidimensional uncertainty for effective decision-making. Via 600K training episodes from a fake news tweets dataset with an annotated intent class, we evaluate the performance of uncertainty-aware reward in DRL. Evaluation results demonstrate that our proposed framework efficiently reduces the number of selected words to maintain a high 95% multi-class accuracy.