Browsing by Author "Zietsman, Lizette"
Now showing 1 - 20 of 37
Results Per Page
Sort Options
- Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building SystemsHu, Weiwei (Virginia Tech, 2012-05-21)In this thesis we present theoretical and numerical results for a feedback control problem defined by a thermal fluid. The problem is motivated by recent interest in designing and controlling energy efficient building systems. In particular, we show that it is possible to locally exponentially stabilize the nonlinear Boussinesq Equations by applying Neumann/Robin type boundary control on a bounded and connected domain. The feedback controller is obtained by solving a Linear Quadratic Regulator problem for the linearized Boussinesq equations. Applying classical results for semilinear equations where the linear term generates an analytic semigroup, we establish that this Riccati-based optimal boundary feedback control provides a local stabilizing controller for the full nonlinear Boussinesq equations. In addition, we present a finite element Galerkin approximation. Finally, we provide numerical results based on standard Taylor-Hood elements to illustrate the theory.
- A Bayesian Approach to Estimating Background Flows from a Passive ScalarKrometis, Justin (Virginia Tech, 2018-06-26)We consider the statistical inverse problem of estimating a background flow field (e.g., of air or water) from the partial and noisy observation of a passive scalar (e.g., the concentration of a pollutant). Here the unknown is a vector field that is specified by large or infinite number of degrees of freedom. We show that the inverse problem is ill-posed, i.e., there may be many or no background flows that match a given set of observations. We therefore adopt a Bayesian approach, incorporating prior knowledge of background flows and models of the observation error to develop probabilistic estimates of the fluid flow. In doing so, we leverage frameworks developed in recent years for infinite-dimensional Bayesian inference. We provide conditions under which the inference is consistent, i.e., the posterior measure converges to a Dirac measure on the true background flow as the number of observations of the solute concentration grows large. We also define several computationally-efficient algorithms adapted to the problem. One is an adjoint method for computation of the gradient of the log likelihood, a key ingredient in many numerical methods. A second is a particle method that allows direct computation of point observations of the solute concentration, leveraging the structure of the inverse problem to avoid approximation of the full infinite-dimensional scalar field. Finally, we identify two interesting example problems with very different posterior structures, which we use to conduct a large-scale benchmark of the convergence of several Markov Chain Monte Carlo methods that have been developed in recent years for infinite-dimensional settings.
- Computational Approaches to Improving Room Heating and Cooling for Energy Efficiency in BuildingsMcBee, Brian K. (Virginia Tech, 2011-08-25)With a nation-wide aim toward reducing operational energy costs in buildings, it is important to understand the dynamics of controlled heating, cooling, and air circulation of an individual room, the "One-Room Model Problem." By understanding how one most efficiently regulates a room's climate, one can use this knowledge to help develop overall best-practice power reduction strategies. A key toward effectively analyzing the "One-Room Model Problem" is to understand the capabilities and limitations of existing commercial tools designed for similar problems. In this thesis we develop methodology to link commercial Computational Fluid Dynamics (CFD) software COMSOL with standard computational mathematics software MATLAB, and design controllers that apply inlet airflow and heating or cooling to a room and investigate their effects. First, an appropriate continuum model, the Boussinesq System, is described within the framework of this problem. Next, abstract and weak formulations of the problem are described and tied to a Finite Element Method (FEM) approximation as implemented in the interface between COMSOL and MATLAB. A methodology is developed to design Linear Quadratic Regulator (LQR) controllers and associated functional gains in MATLAB which can be implemented in COMSOL. These "closed-loop" methods are then tested numerically in COMSOL and compared against "open-loop" and average state closed-loop controllers.
- The Distance to Uncontrollability via Linear Matrix InequalitiesBoyce, Steven James (Virginia Tech, 2010-12-03)The distance to uncontrollability of a controllable linear system is a measure of the degree of perturbation a system can undergo and remain controllable. The definition of the distance to uncontrollability leads to a non-convex optimization problem in two variables. In 2000 Gu proposed the first polynomial time algorithm to compute this distance. This algorithm relies heavily on efficient eigenvalue solvers. In this work we examine two alternative algorithms that result in linear matrix inequalities. For the first algorithm, proposed by Ebihara et. al., a semidefinite programming problem is derived via the Kalman-Yakubovich-Popov (KYP) lemma. The dual formulation is also considered and leads to rank conditions for exactness verification of the approximation. For the second algorithm, by Dumitrescu, Şicleru and Ştefan, a semidefinite programming problem is derived using a sum-of-squares relaxation of an associated matrix-polynomial and the associated Gram matrix parameterization. In both cases the optimization problems are solved using primal-dual-interior point methods that retain positive semidefiniteness at each iteration. Numerical results are presented to compare the three algorithms for a number of benchmark examples. In addition, we also consider a system that results from a finite element discretization of the one-dimensional advection-diffusion equation. Here our objective is to test these algorithms for larger problems that originate in PDE-control.
- A Distributed Parameter Approach to Optimal Filtering and Estimation with Mobile Sensor NetworksRautenberg, Carlos Nicolas (Virginia Tech, 2010-03-31)In this thesis we develop a rigorous mathematical framework for analyzing and approximating optimal sensor placement problems for distributed parameter systems and apply these results to PDE problems defined by the convection-diffusion equations. The mathematical problem is formulated as a distributed parameter optimal control problem with integral Riccati equations as constraints. In order to prove existence of the optimal sensor network and to construct a framework in which to develop rigorous numerical integration of the Riccati equations, we develop a theory based on Bochner integrable solutions of the Riccati equations. In particular, we focus on ℐp-valued continuous solutions of the Bochner integral Riccati equation. We give new results concerning the smoothing effect achieved by multiplying a general strongly continuous mapping by operators in ℐp. These smoothing results are essential to the proofs of the existence of Bochner integrable solutions of the Riccati integral equations. We also establish that multiplication of continuous ℐp-valued functions improves convergence properties of strongly continuous approximating mappings and specifically approximating C₀-semigroups. We develop a Galerkin type numerical scheme for approximating the solutions of the integral Riccati equation and prove convergence of the approximating solutions in the ℐp-norm. Numerical examples are given to illustrate the theory.
- Filter Based Stabilization Methods for Reduced Order Models of Convection-Dominated SystemsMoore, Ian Robert (Virginia Tech, 2023-05-15)In this thesis, I examine filtering based stabilization methods to design new regularized reduced order models (ROMs) for under-resolved simulations of unsteady, nonlinear, convection-dominated systems. The new ROMs proposed are variable delta filtering applied to the evolve-filter-relax ROM (V-EFR ROM), variable delta filtering applied to the Leray ROM, and approximate deconvolution Leray ROM (ADL-ROM). They are tested in the numerical setting of Burgers equation, a nonlinear, time dependent problem with one spatial dimension. Regularization is considered for the low viscosity, convection dominated setting.
- Finite Element Simulations of Two Dimensional Peridynamic ModelsGlaws, Andrew Taylor (Virginia Tech, 2014-05-27)This thesis explores the science of solid mechanics via the theory of peridynamics. Peridynamics has several key advantages over the classical theory of elasticity. The most notable of which is the ease with which fractures in the the material are handled. The goal here is to study the two theories and how they relate for problems in which the classical method is known to work well. While it is known that state-based peridynamic models agree with classical elasticity as the horizon radius vanishes, similar results for bond-based models have yet to be developed. In this study, we use numerical simulations to investigate the behavior of bond-based peridynamic models under this limit for a number of cases where analytic solutions of the classical elasticity problem are known. To carry out this study, the integral-based peridynamic model is solved using the finite element method in two dimensions and compared against solutions using the classical approach.
- Fréchet Sensitivity Analysis and Parameter Estimation in Groundwater Flow ModelsLeite Dos Santos Nunes, Vitor Manuel (Virginia Tech, 2013-05-09)In this work we develop and analyze algorithms motivated by the parameter estimation problem corresponding to a multilayer aquifer/interbed groundwater flow model. The parameter estimation problem is formulated as an optimization problem, then addressed with algorithms based on adjoint equations, quasi-Newton schemes, and multilevel optimization. In addition to the parameter estimation problem, we consider properties of the parameter to solution map. This includes invertibility (known as identifiability) and differentiability properties of the map. For differentiability, we expand existing results on Fréchet sensitivity analysis to convection diffusion equations and groundwater flow equations. This is achieved by proving that the Fréchet derivative of the solution operator is Hilbert-Schmidt, under smoothness assumptions for the parameter space. In addition, we approximate this operator by time dependent matrices, where their singular values and singular vectors converge to their infinite dimension peers. This decomposition proves to be very useful as it provides vital information as to which perturbations in the distributed parameters lead to the most significant changes in the solutions, as well as applications to uncertainty quantification. Numerical results complement our theoretical findings.
- Gappy POD and Temporal Correspondence for Lizard Motion EstimationKurdila, Hannah Robertshaw (Virginia Tech, 2018-06-20)With the maturity of conventional industrial robots, there has been increasing interest in designing robots that emulate realistic animal motions. This discipline requires careful and systematic investigation of a wide range of animal motions from biped, to quadruped, and even to serpentine motion of centipedes, millipedes, and snakes. Collecting optical motion capture data of such complex animal motions can be complicated for several reasons. Often there is the need to use many high-quality cameras for detailed subject tracking, and self-occlusion, loss of focus, and contrast variations challenge any imaging experiment. The problem of self-occlusion is especially pronounced for animals. In this thesis, we walk through the process of collecting motion capture data of a running lizard. In our collected raw video footage, it is difficult to make temporal correspondences using interpolation methods because of prolonged blurriness, occlusion, or the limited field of vision of our cameras. To work around this, we first make a model data set by making our best guess of the points' locations through these corruptions. Then, we randomly eclipse the data, use Gappy POD to repair the data and then see how closely it resembles the initial set, culminating in a test case where we simulate the actual corruptions we see in the raw video footage.
- H-Infinity Norm Calculation via a State Space FormulationKusterJr, George Emil (Virginia Tech, 2013-01-21)There is much interest in the design of feedback controllers for linear systems that minimize the H-infty norm of a specific closed-loop transfer function. The H-infty optimization problem initiated by Zames (1981), \\cite{zames1981feedback}, has received a lot of interest since its formulation. In H-infty control theory one uses the H-infty norm of a stable transfer function as a performance measure. One typically uses approaches in either the frequency domain or a state space formulation to tackle this problem. Frequency domain approaches use operator theory, J-spectral factorization or polynomial methods while in the state space approach one uses ideas similar to LQ theory and differential games. One of the key computational issues in the design of H-infty optimal controllers is the determination of the optimal H-infty norm. That is, determining the infimum of r for which the H-infty norm of the associated transfer function matrix is less than r. Doyle et al (1989), presented a state space characterization for the sub-optimal H-infty control problem. This characterization requires that the unique stabilizing solutions to two Algebraic Riccati Equations are positive semi definite as well as satisfying a spectral radius coupling condition. In this work, we describe an algorithm by Lin et al(1999), used to calculate the H-infty norm for the state feedback and output feedback control problems. This algorithm only relies on standard assumptions and divides the problem into three sub-problems. The first two sub-problems rely on algorithms for the state feedback problem formulated in the frequency domain as well as a characterization of the optimal value in terms of the singularity of the upper-half of a matrix created by the stacked basis vectors of the invariant sub-space of the associated Hamiltonian matrix. This characterization is verified through a bisection or secant method. The third sub-problem relies on the geometric nature of the spectral radius of the product of the two solutions to the Algebraic Riccati Equations associated with the first two sub-problems. Doyle makes an intuitive argument that the spectral radius condition will fail before the conditions involving the Algebraic Riccati Equations fail. We present numerical results where we demonstrate that the Algebraic Riccati Equation conditions fail before the spectral radius condition fails.
- Mathematical Models of Immune Responses to Infectious DiseasesErwin, Samantha H. (Virginia Tech, 2017-04-04)In this dissertation, we investigate the mechanisms behind diseases and the immune responses required for successful disease resolution in three projects: i) A study of HIV and HPV co-infection, ii) A germinal center dynamics model, iii) A study of monoclonal antibody therapy. We predict that the condition leading to HPV persistence during HIV/HPV co-infection is the permissive immune environment created by HIV, rather than the direct HIV/HPV interaction. In the second project, we develop a germinal center model to understand the mechanisms that lead to the formation of potent long-lived plasma. We predict that the T follicular helper cells are a limiting resource and present possible mechanisms that can revert this limitation in the presence of non-mutating and mutating antigen. Finally, we develop a pharmacokinetic model of 3BNC117 antibody dynamics and HIV viral dynamics following antibody therapy. We fit the models to clinical trial data and conclude that antibody binding is delayed and that the combined effects of initial CD4 T cell count, initial HIV levels, and virus production are strong indicators of a good response to antibody immunotherapy.
- MATLODE: A MATLAB ODE Solver and Sensitivity Analysis ToolboxD'Augustine, Anthony Frank (Virginia Tech, 2018-05-04)Sensitivity analysis quantifies the effect that of perturbations of the model inputs have on the model's outputs. Some of the key insights gained using sensitivity analysis are to understand the robustness of the model with respect to perturbations, and to select the most important parameters for the model. MATLODE is a tool for sensitivity analysis of models described by ordinary differential equations (ODEs). MATLODE implements two distinct approaches for sensitivity analysis: direct (via the tangent linear model) and adjoint. Within each approach, four families of numerical methods are implemented, namely explicit Runge-Kutta, implicit Runge-Kutta, Rosenbrock, and single diagonally implicit Runge-Kutta. Each approach and family has its own strengths and weaknesses when applied to real world problems. MATLODE has a multitude of options that allows users to find the best approach for a wide range of initial value problems. In spite of the great importance of sensitivity analysis for models governed by differential equations, until this work there was no MATLAB ordinary differential equation sensitivity analysis toolbox publicly available. The two most popular sensitivity analysis packages, CVODES [8] and FATODE [10], are geared toward the high performance modeling space; however, no native MATLAB toolbox was available. MATLODE fills this need and offers sensitivity analysis capabilities in MATLAB, one of the most popular programming languages within scientific communities such as chemistry, biology, ecology, and oceanogra- phy. We expect that MATLODE will prove to be a useful tool for these communities to help facilitate their research and fill the gap between theory and practice.
- Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert spaceBurns, John A.; Sachs, Ekkehard W.; Zietsman, Lizette (Siam Publications, 2008)In this paper we consider the convergence of the infinite dimensional version of the Kleinman-Newton algorithm for solving the algebraic Riccati operator equation associated with the linear quadratic regulator problem in a Hilbert space. We establish mesh independence for this algorithm and apply the result to systems governed by delay equations. Numerical examples are presented to illustrate the results.
- Minimally Corrective, Approximately Recovering Priors to Correct Expert Judgement in Bayesian Parameter EstimationMay, Thomas Joseph (Virginia Tech, 2015-07-23)Bayesian parameter estimation is a popular method to address inverse problems. However, since prior distributions are chosen based on expert judgement, the method can inherently introduce bias into the understanding of the parameters. This can be especially relevant in the case of distributed parameters where it is difficult to check for error. To minimize this bias, we develop the idea of a minimally corrective, approximately recovering prior (MCAR prior) that generates a guide for the prior and corrects the expert supplied prior according to that guide. We demonstrate this approach for the 1D elliptic equation or the elliptic partial differential equation and observe how this method works in cases with significant and without any expert bias. In the case of significant expert bias, the method substantially reduces the bias and, in the case with no expert bias, the method only introduces minor errors. The cost of introducing these small errors for good judgement is worth the benefit of correcting major errors in bad judgement. This is particularly true when the prior is only determined using a heuristic or an assumed distribution.
- Model and Data Reduction for Control, Identification and Compressed SensingKramer, Boris Martin Josef (Virginia Tech, 2015-09-05)This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n >= 100,000 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.
- Model Reduction of Nonlinear Fire Dynamics ModelsLattimer, Alan Martin (Virginia Tech, 2016-04-28)Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order models (ROMs), creating new ROM techniques for nonlinear systems, and preserving optimality when discretizing a continuous-time ROM. Currently, proper orthogonal decomposition (POD) is being used to reduce wildland fire-spread models with limited success. We use a technique known as the discrete empirical interpolation method (DEIM) to address the slowness due to the nonlinearity. We create new methods to reduce nonlinear models, such as the Burgers' equation, that perform better than POD over a wider range of input conditions. Further, these ROMs can often be constructed without needing to capture full-order solutions a priori. This significantly reduces the off-line costs associated with creating the ROM. Finally, we investigate methods of time-discretization that preserve the optimality conditions in a certain norm associated with the input to output mapping of a dynamical system. In particular, we are able to show that the Crank-Nicholson method preserves the optimality conditions, but other single-step methods do not. We further clarify the need for these discrete-time ROMs to match at infinity in order to ensure local optimality.
- Modeling and Analysis of a Moving Conductive String in a Magnetic FieldHasanyan, Jalil Davresh (Virginia Tech, 2019-02-07)A wide range of physical systems are modeled as axially moving strings; such examples are belts, tapes, wires and fibers with applied electromagnetic fields. In this study, we propose a model that describes the motion of a current-carrying conductive string in a lateral magnetic field, while it is being pulled axially. This model is a generalization of past studies that have neglected one or more properties featured in our system. It is assumed that the string is moving with a constant velocity between two rings that are a finite distance apart. Directions of the magnetic field and the motion of the string coincide. The problem is first considered in a static setting. Stability critical values of the magnetic field, pulling speed, and current are shown to exist when the uniform motion (along a string line) of the string buckles into spiral forms. In the dynamic setting, conditions for stability of certain solutions are presented and discussed. It is shown that there is a divergence between the critical values in the linear dynamic and static cases. Furthermore, traveling wave solutions are examined for certain cases of our general system. We develop an approximate solution for a nonlinear moving string when a periodic nonstationary current flows through the string. Domains of parameters are defined when the string falls into a pre-chaotic state, i.e., the frequency of vibrations is doubled.
- Modeling of Passive Chilled Beams for use in Efficient Control of Indoor-Air EnvironmentsErwin, Samantha H. (Virginia Tech, 2013-07-10)This work is done as a small facet of a much larger study on efficient control of indoor air environments. Halton passive chilled beams are used to cool rooms and the focus of this work is to model the beams. This work also reviews the mesh making process in Gmsh. ANSYS Fluent was used throughout the entire research and this thesis describes the software and a careful description of the case study.
- Modeling Students' Units Coordinating ActivityBoyce, Steven James (Virginia Tech, 2014-08-29)Primarily via constructivist teaching experiment methodology, units coordination (Steffe, 1992) has emerged as a useful construct for modeling students' psychological constructions pertaining to several mathematical domains, including counting sequences, whole number multiplicative conceptions, and fractions schemes. I describe how consideration of units coordination as a Piagetian (1970b) structure is useful for modeling units coordination across contexts. In this study, I extend teaching experiment methodology (Steffe and Thompson, 2000) to model the dynamics of students' units coordinating activity across contexts within a teaching experiment, using the construct of propensity to coordinate units. Two video-recorded teaching experiments involving pairs of sixth-grade students were analyzed to form a model of the dynamics of students' units coordinating activity. The modeling involved separation of transcriptions into chunks that were coded dichotomously for the units coordinating activity of a single student in each dyad. The two teaching experiments were used to form 5 conjectures about the output of the model that were then tested with a third teaching experiment. The results suggest that modeling units coordination activity via the construct of propensity to coordinate units was useful for describing patterns in the students' perturbations during the teaching sessions. The model was moderately useful for identifying sequences of interactions that support growth in units coordination. Extensions, modifications, and implications of the modeling approach are discussed.
- Multidimensional Adaptive Quadrature Over SimplicesPond, Kevin R. (Virginia Tech, 2010-08-06)The objective of this work is the development of novel, efficient and reliable multidi- mensional adaptive quadrature routines defined over simplices (MAQS). MAQS pro- vides an approximation to the integral of a function defined over the unit hypercube and provides an error estimate that is used to drive a global subdivision strategy. The quadrature estimate is based on Lagrangian interpolation defined by using the vertices, edge nodes and interior points of a given simplex. The subdivision of a given simplex is chosen to allow for the reuse of points (thus function evaluations at those points) in successive refinements of the initial tessellation. While theory is developed for smooth functions, this algorithm is well suited for functions with discontinuities in dimensions three through six. Other advantages of this approach include straight-forward parallel implementation and application to integrals over polyhedral domains.