Browsing by Author "Zuo, Ziwei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- The Application of a Nanomaterial Optical Fiber Biosensor Assay for Identification of Brucella NomenspeciesMcCutcheon, Kelly; Bandara, Aloka B.; Zuo, Ziwei; Heflin, James R.; Inzana, Thomas J. (MDPI, 2019-05-21)Bacteria in the genus Brucella are the cause of brucellosis in humans and many domestic and wild animals. A rapid and culture-free detection assay to detect Brucella in clinical samples would be highly valuable. Nanomaterial optical fiber biosensors (NOFS) are capable of recognizing DNA hybridization events or other analyte interactions with high specificity and sensitivity. Therefore, a NOFS assay was developed to detect Brucella DNA from cultures and in tissue samples from infected mice. An ionic self-assembled multilayer (ISAM) film was coupled to a long-period grating optical fiber, and a nucleotide probe complementary to the Brucella IS711 region and modified with biotin was bound to the ISAM by covalent conjugation. When the ISAM/probe duplex was exposed to lysate containing ≥100 killed cells of Brucella, or liver or spleen tissue extracts from Brucella-infected mice, substantial attenuation of light transmission occurred, whereas exposure of the complexed fiber to non-Brucella gram-negative bacteria or control tissue samples resulted in negligible attenuation of light transmission. Oligonucleotide probes specific for B. abortus, B. melitensis, and B. suis could also be used to detect and differentiate these three nomenspecies. In summary, the NOFS biosensor assay detected three nomenspecies of Brucella without the use of polymerase chain reaction within 30 min and could specifically detect low numbers of this bacterium in clinical samples.
- Development of an Optical Fiber Biosensor with Nanoscale Self-Assembled Affinity LayerZuo, Ziwei (Virginia Tech, 2014-01-29)Optical sensor systems that integrate Long-Period-Gratings (LPG) as the detection arm have been proven to be highly sensitive and reliable in many applications. With increasing public recognition of threats from bacteria-induced diseases and their potential outbreak among densely populated communities, an intrinsic, low-cost biosensor device that can perform quick and precise identification of the infection type is in high demand to respond to such challenging situations and control the damage those diseases could possibly cause. This dissertation describes the development of a biosensor platform that utilizes polymer thin films, known as ionic self-assembled multilayer (ISAM) films, to be the sensitivity- enhancing medium between an LPG fiber and specific, recognition layer. With the aid of cross- linking reactions, monoclonal antibodies (IgG) or DNA probes are immobilized onto the surface of the ISAM-coated fiber, which form the core component of the biosensor. By immersing such biosensor fiber into a sample suspension, the immobilized antibody molecules will bind the specific antigen and capture the target cells or cell fragments onto the surface of the fiber sensor, resulting in increasing the average thickness of the fiber cladding and changing the refractive index of the cladding. This change occurring at the surface of the fiber results in a decrease of optical power emerging from the LPG section of the fiber. By comparing the transmitted optical power before and after applying the sample suspension, we are able to determine whether or not certain bacterial species have attached to the surface of the fiber, and as a consequence, we are able to determine whether or not the solution contains the targeted bacteria. This platform has the potential for detection of a wide range of bacteria types. In our study, we have primarily investigated the sensitivity and specificity of the biosensor to methicillin- resistant Staphlococcus aureus (MRSA). The data we obtained have shown a sensitive threshold at as low as 102 cfu/ml with pure culture samples. A typical MRSA antibody-based biosensor assay with MRSA sample at this concentration has shown optical power reduction of 21.78%. In a detailed study involving twenty-six bacterial strains possessing the PBP2a protein that enables antibiotic resistance and sixteen strains that do not, the biosensor system was able to correctly identify every sample in pure culture samples at concentration of 104 cfu/ml. Further studies have also been conducted on infected mouse tissues and clinical swab samples from human ears, noses, and skin, and in each case, the system was in full agreement with the results of standard culture tests. However, the system is not yet able to correctly distinguish MRSA and non-MRSA infections in clinical swab samples taken from infected patient wounds. It is proposed that nonspecific binding due to insufficient blocking methods is the key issue. Other bacterial strains, such as Brucella and Francisella tularensis have also been studied using a similar biosensor platform with DNA probes and antibodies, respectively, and the outcomes are also promising. The Brucella DNA biosensor is able to reflect the existence of 3 Brucella strains at 100 cfu/ml with an average of 12.2% signal reduction, while negative control samples at 106cfu/ml generate an average signal reduction of -2.1%. Similarly, the F. tularensis antibodies biosensor has shown a 25.6% signal reduction to LVS strain samples at 100 cfu/ml, while for negative control samples at the same concentration, it only produces a signal reduction of 0.05%. In general, this biosensor platform has demonstrated the potential of detecting a wide range of bacteria in a rapid and relatively inexpensive manner.
- Fabrication of intensity-based Long-Period-Gratings fiber sensor with CO2 LaserZuo, Ziwei (Virginia Tech, 2015-07-25)This thesis investigates the fabrication technique and procedures for producing long period grating (LPG) fiber sensors with point-by-point irradiation under a CO2 laser beam. The type of fiber sensor under examination is desirable to be highly sensitive to the variation of the thickness and refractive index of a thin film deposited on the LPGs, making it a promising candidate as a core sensor component in a biosensor system developed for detection and verification of pathogenic bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA), Francisella tularensis, and so on. We have previously demonstrated that a UV-induced long-period-grating (LPG) based fiber sensor is extremely sensitive to small variation of refractive index (RI) and thickness of the surrounding medium. In this thesis, we will present a CO2 laser and step- stage system that operate automatically under control of a Matlab program to inscribe LPGs with desired grating period and fabrication conditions. Examples of CO2 laser induced LPGs have been found to exhibit high sensitivity, with transmissive power attenuation of more than 15 dB at the resonant peak of 1402 nm under deposition of Ionic Self-Assembled Monolayer (ISAM) thin film that is around 50 nm in thickness. When tuned to its maximum sensitivity region, this LPG has shown a transmission power reduction of 79% with the deposition of only 1 bilayer of ISAM thin film at the monitored wavelength. This result is comparable in sensitivity with the UV-induced LPGs, yet with the advantage of lower fabrication cost and simplified fabrication procedure.