Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI)
Permanent URI for this collection
Browse
Browsing Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI) by Issue Date
Now showing 1 - 20 of 1789
Results Per Page
Sort Options
- Reclaimed Water for Turfgrass IrrigationEvanylo, Gregory K.; Ervin, Erik H.; Zhang, Xunzhong (MDPI, 2010-09-21)Sustainable irrigation of turfgrass grown on coarse-textured soils with reclaimed water must avoid detrimental effects of soluble salts on plant growth and soil quality and groundwater enrichment of nitrogen (N) and phosphorus (P). The purpose of this study was (1) to investigate the effects of irrigating with municipal reclaimed water containing higher concentrations of soluble salts than potable water on turfgrass growth and quality and (2) to compare the effects of reclaimed and potable water on turfgrass assimilation and leaching of N and P. A sand-based medium plumbed to supply potable and reclaimed water and instrumented with lysimeters to collect leachate was planted with hybrid bermudagrass (Cynodon dactylon x Cynodon transvaalensis var. Tifsport) and creeping bentgrass (Agrostis stolonifera var. L-93). Both species produced high quality turfgrass with the reclaimed water. Although both grasses are moderately or highly salt tolerant when fully established, the bermudagrass growth and quality were reduced by the reclaimed water upon breaking dormancy, and its N use during this period was reduced. Continuous use of reclaimed water of the quality used in the study poses a potential soil Na accumulation problem. Both turfgrasses assimilated high amounts of N and P with minimal potential losses to groundwater.
- Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate EconomyZhang, Y. H. Percival; Mielenz, Jonathan R. (MDPI, 2011-01-31)The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) à 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.
- Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensisCooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J. (MDPI, 2011-03-07)The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 µm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis.
- Magnetoelectric Interactions in Lead-Based and Lead-Free CompositesBichurin, Mirza I.; Petrov, Vladimir M.; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su-Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank (MDPI, 2011-04-06)Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.
- Population Growth Potential of the Bed Bug, Cimex lectularius L.: A Life Table AnalysisPolanco, Andrea M.; Brewster, Carlyle C.; Miller, Dini M. (MDPI, 2011-04-29)Experimental life tables were constructed and analyzed for three strains of the common bed bug: a pyrethroid-susceptible laboratory strain (HS), a highly resistant field strain (RR), and a field strain with a declining level of resistance (KR). Egg to adult survival in the RR strain was 94% compared with 79% and 69% in the HS and KR strains, respectively. The RR strain also developed significantly faster from egg to adult (~35 days) than the other two strains (~40 days). Analysis of a survivorship and fecundity life table for the RR strain produced the following results. The average life expectancy for a newly laid egg was ~143 days, and that of a newly molted adult was ~127 days. Females produced an average of 0.64 daughter eggs/day with the highest weekly production during the fifth week of adult life. Analysis of daily reproductive parity showed that females produced 1-3 and 4-6 eggs on 79 and 21% of the days, respectively, when egg laying occurred. The net reproductive rate (R0) of the RR strain was ~35, which represents a 35-fold increase in the population per generation (~92 days). The intrinsic rate of increase, r, was 0.054 indicating that the population multiplies 1.1 times/female/day (_) and doubles in size every 13 days. The stable age distribution (cx) was dominated by nymphs (54%), followed by eggs (34%) and adults (12%). Reproductive values (vx) for the strain increased from egg to the adult stage.
- Host Searching and Aggregation Activity of Recently Fed and Unfed Bed Bugs (Cimex lectularius L.)Reis, Matthew D.; Miller, Dini M. (MDPI, 2011-05-04)Groups of starved, virgin adult male or female bed bugs were stimulated to search for a host by the presence of a heated artificial feeder. Some of the bed bug groups were allowed to obtain a blood meal and some were not. After the removal of the feeder, bed bugs were observed throughout the scotophase to record their searching and aggregation behavior. Groups of male and female bed bugs that were unable to obtain a blood meal continued to search in the arena for the majority of the scotophase. Bed bugs that were able to obtain a blood meal returned to their shelter to aggregate 30 min after feeding. Overall, the proportion of bed bugs aggregating in shelters during the scotophase was significantly greater for those that had fed successfully than those that had not. However, all bed bugs, regardless of feeding status, began to return to shelters to aggregate 2 h prior to the photophase.
- Survivorship During Starvation for Cimex lectularius L.Polanco, Andrea M.; Miller, Dini M.; Brewster, Carlyle C. (MDPI, 2011-05-11)Four bed bug strains (Cimex lectularius) with different levels of pyrethroid resistance were evaluated to determine their ability to survive extended periods of starvation. First instar bed bugs of all strains were the most vulnerable to starvation (13.8-36.3 days mean survival time). Fifth instars and adults survived the longest during starvation (41.5-142.6 days). Significant differences in survivorship during starvation were observed between resistant and susceptible strains of bed bugs. Overall, all immature and adult stages of the resistant bed bug strains had significantly shorter survival times than those of the susceptible strains (P < 0.05).
- Reproductive Potential of Field-collected Populations of Cimex lectularius L. and the Cost of Traumatic InseminationPolanco, Andrea M.; Miller, Dini M.; Brewster, Carlyle C. (MDPI, 2011-07-05)Egg production was compared among three field-collected bed bug strains over the course of 13 feeding/oviposition cycles, each of which lasted ~10 days. No significant differences were found among bed bug strains in the mean number of eggs/female/day (~1.0 egg). However, significant differences were found among strains in their patterns of egg production throughout the study period. Specifically, differences were observed in the timing of peak egg production and the rapidity of egg production decline among the three strains. Egg production was also quantified for female bed bugs that were subjected to single or multiple traumatic insemination events over a period of six feeding/oviposition cycles. Significant differences were found in egg production between females exposed to single and multiple inseminations. Females mated only once produced 83.8 4.5 (mean SE) eggs over six feeding cycles. Females exposed to multiple inseminations produced 61.0 3.1 eggs, indicating that multiple traumatic inseminations may reduce female fecundity by as much as 27%. This study is the first to suggest that, in a new infestation (first ~6 weeks), a solitary, singly-mated female with access to regular blood meals is capable of producing greater numbers of offspring than the same female in the presence of a male.
- Chemical Data Assimilation-An OverviewSandu, Adrian; Chai, Tianfeng (MDPI, 2011-08-29)Chemical data assimilation is the process by which models use measurements to produce an optimal representation of the chemical composition of the atmosphere. Leveraging advances in algorithms and increases in the available computational power, the integration of numerical predictions and observations has started to play an important role in air quality modeling. This paper gives an overview of several methodologies used in chemical data assimilation. We discuss the Bayesian framework for developing data assimilation systems, the suboptimal and the ensemble Kalman filter approaches, the optimal interpolation (OI), and the three and four dimensional variational methods. Examples of assimilation real observations with CMAQ model are presented.
- Chemical Mechanism Solvers in Air Quality ModelsZhang, Hong; Linford, John C.; Sandu, Adrian; Sander, Rolf (MDPI, 2011-09-01)The solution of chemical kinetics is one of the most computationally intensive tasks in atmospheric chemical transport simulations. Due to the stiff nature of the system, implicit time stepping algorithms which repeatedly solve linear systems of equations are necessary. This paper reviews the issues and challenges associated with the construction of efficient chemical solvers, discusses several families of algorithms, presents strategies for increasing computational efficiency, and gives insight into implementing chemical solvers on accelerated computer architectures.
- Phyllopshere Bacterial Community Structure of Spinach (Spinacia oleracea) as Affected by Cultivar and Environmental Conditions at Time of HarvestLopez-Velasco, Gabriela; Welbaum, Gregory E.; Falkinham, Joseph O. III; Ponder, Monica A. (MDPI, 2011-12-20)Modern molecular ecology techniques were used to demonstrate the effects of plant genotype and environmental conditions prior to harvest on the spinach epiphytic bacterial community. Three cultivars of spinach with different leaf topographies were collected at three different periods during the fall growing season. Leaf surface topography had an effect on diversity and number of culturable bacteria on the phylloepiphtyic community of spinach. Savoy cultivars, which had larger surface area and more stomata and glandular trichomes, where bacterial aggregates were observed, featured more diverse communities with increased richness and larger bacterial populations compared to flat-leaved cultivars. Bacterial community richness was compared using denaturant gradient gel electrophoresis (DGGE), while abundance was quantified using 16s rRNA primers for major phyla. The most diverse communities, both in richness and abundance, were observed during the first sampling period, immediately following a period of rapid spinach growth. Exposure to lower air and soil temperatures and decreased precipitation resulted in significantly reduced bacterial population size and bacterial community richness in November and December. This study describes the effect of the plant characteristics and environmental conditions that affect spinach microbiota population size and diversity, which might have implications in the survival of food and plant bacterial pathogens.
- A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II),Rh(III),Ru(II) Photoinitiated Electron CollectorsWhite, Travis A.; Knoll, Jessica D.; Arachchige, Shamindri M.; Brewer, Karen J. (MDPI, 2011-12-27)Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL)2Ru(dpp)}2RhX2](PF6)5 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the 3MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the 3MLCT state and not the 3MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.
- Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging lidarShrestha, Rupesh; Wynne, Randolph H. (MDPI, 2012-02-15)Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate biophysical parameters such as height, crown area, diameter at breast height, and biomass for over two thousand individual trees were developed using best subsets multiple linear regression for a study area in central Oklahoma, USA using point cloud distributional metrics from an Optech ALTM 2050 lidar system. A high level of accuracy was attained for estimating individual tree height (R2 = 0.89), dbh (R2 = 0.82), crown diameter (R2 = 0.90), and biomass (R2 = 0.67) using lidar-based metrics for pooled data of all tree species. More variance was explained in species-specific estimates of biomass (R2 = 0.68 for Juniperus virginiana to 0.84 for Ulmus parviflora) than in estimates from broadleaf deciduous (R2 = 0.63) and coniferous (R2 = 0.45) taxonomic groups-or the data set analysed as a whole (R2 = 0.67). The metric crown area performed particularly well for most of the species-specific biomass equations, which suggests that tree crowns should be delineated accurately, whether manually or using automatic individual tree detection algorithms, to obtain a good estimation of biomass using lidar-based metrics.
- Scaling Law for Photon Transmission through Optically Turbid Slabs Based on Random Walk TheoryLi, Xuesong; Ma, Lin (MDPI, 2012-03-01)Past work has demonstrated the value of a random walk theory (RWT) to solve multiple-scattering problems arising in numerous contexts. This paper's goal is to investigate the application range of the RWT using Monte Carlo simulations and extending it to anisotropic media using scaling laws. Meanwhile, this paper also reiterates rules for converting RWT formulas to real physical dimensions, and corrects some errors which appear in an earlier publication. The RWT theory, validated by the Monte Carlo simulations and combined with the scaling law, is expected to be useful to study multiple scattering and to greatly reduce the computation cost.
- Modeling Time's ArrowJejjala, Vishnu; Kavic, Michael; Minic, Djordje; Tze, Chia-Hsiung (MDPI, 2012-04)Quantum gravity, the initial low entropy state of the Universe, and the problem of time are interlocking puzzles. In this article, we address the origin of the arrow of time from a cosmological perspective motivated by a novel approach to quantum gravitation. Our proposal is based on a quantum counterpart of the equivalence principle, a general covariance of the dynamical phase space. We discuss how the nonlinear dynamics of such a system provides a natural description for cosmological evolution in the early Universe. We also underscore connections between the proposed non-perturbative quantum gravity model and fundamental questions in non-equilibrium statistical physics.
- Regulatory T Cells in Arterivirus and Coronavirus Infections: Do They Protect Against Disease or Enhance it?Cecere, Thomas E.; Todd, S. Michelle; LeRoith, Tanya (MDPI, 2012-05-01)Regulatory T cells (Tregs) are a subset of T cells that are responsible for maintaining peripheral immune tolerance and homeostasis. The hallmark of Tregs is the expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells (nTreg) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in the thymus and function in maintaining peripheral immune tolerance. Other CD4+, CD4-CD8-, and CD8+CD28- T cells can be induced to acquire regulatory function by antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) Tregs frequently express high levels of the interleukin 2 receptor (CD25). Atypical Tregs express FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of inducible Tregs is presumably to maintain immune homeostasis, especially in the context of chronic inflammation or infection. Induction of Tregs in coronaviral infections protects against the more severe forms of the disease attributable to the host response. However, arteriviruses have exploited these T cell subsets as a means to dampen the immune response allowing for viral persistence. Treg induction or activation in the pathogenesis of disease has been described in both porcine reproductive and respiratory syndrome virus, lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the development and biology of regulatory T cells in the context of arteriviral and coronaviral infection.
- A Potential Role for Pro-Inflammatory Cytokines in the Development of Insulin Resistance in HorsesSuagee, Jessica K.; Corl, Benjamin A.; Geor, Raymond J. (MDPI, 2012-05-02)Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-_, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related.
- A Dual PET/MR Imaging Nanoprobe: 124I Labeled Gd3N@C80Luo, Jianqiao; Wilson, John D.; Zhang, Jianyuan; Hirsch, Jerry I.; Dorn, Harry C.; Fatouros, Panos P.; Shultz, Michael D. (MDPI, 2012-05-10)The current report describes the development of a dual modality tomographic agent for both positron emission tomography and magnetic resonance imaging (PET/MRI). The dual-modality agent in this study was based on a 124I (PET) radiolabeled tri-gadolinium endohedral metallofullerene Gd3N@C80 (MRI) nanoprobe platform. The outer surface of the fullerene cage of the Gd3N@C80 metallofullerenes was surface functionalized with carboxyl and hydroxyl groups (f-Gd3N@C80) using previously developed procedures and subsequently iodinated with 124I to produce 124I-f-Gd3N@C80 nanoprobe. Orthotopic tumor-bearing rats were infused intratumorally by convection-enhanced delivery (CED) with the 124I-f-Gd3N@C80 agent and imaged by MRI or micro PET. The anatomical positioning and distribution of the 124I-f-Gd3N@C80 agent were comparable between the MRI and PET scans. The 124I-f-Gd3N@C80_ dual-agent distribution and infusion site within the tumor was clearly evident in both T1- and T2-weighted MR images. The results demonstrate the successful preparation of a dual-modality imaging agent, 124I-f-Gd3N@C80, which could ultimately be used for simultaneous PET/MR imaging.
- Neonatal Phosphate Nutrition Alters in Vivo and in Vitro Satellite Cell Activity in PigsAlexander, Lindsey S.; Seabolt, Brynn S.; Rhoads, Robert P.; Stahl, Chad H. (MDPI, 2012-06-01)Satellite cell activity is necessary for postnatal skeletal muscle growth. Severe phosphate (PO4) deficiency can alter satellite cell activity, however the role of neonatal PO4 nutrition on satellite cell biology remains obscure. Twenty-one piglets (1 day of age, 1.8 ± 0.2 kg BW) were pair-fed liquid diets that were either PO4 adequate (0.9% total P), supra-adequate (1.2% total P) in PO4 requirement or deficient (0.7% total P) in PO4 content for 12 days. Body weight was recorded daily and blood samples collected every 6 days. At day 12, pigs were orally dosed with BrdU and 12 h later, satellite cells were isolated. Satellite cells were also cultured in vitro for 7 days to determine if PO4 nutrition alters their ability to proceed through their myogenic lineage. Dietary PO4 deficiency resulted in reduced (P < 0.05) sera PO4 and parathyroid hormone (PTH) concentrations, while supra-adequate dietary PO4 improved (P < 0.05) feed conversion efficiency as compared to the PO4 adequate group. In vivo satellite cell proliferation was reduced (P < 0.05) among the PO4 deficient pigs, and these cells had altered in vitro expression of markers of myogenic progression. Further work to better understand early nutritional programming of satellite cells and the potential benefits of emphasizing early PO4 nutrition for future lean growth potential is warranted.
- Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed ForestsPeduzzi, Alicia; Wynne, Randolph H.; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark (MDPI, 2012-06-13)The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.