Charles E. Via Jr. Department of Civil and Environmental Engineering
Permanent URI for this community
The Charles E. Via, Jr. Department of Civil and Environmental Engineering, which is ranked in the top 10 accredited civil and environmental engineering departments by the US News and World Report survey, is one of the largest programs in the United States. The Department has 46 full-time faculty, 657 undergraduate, and 400 graduate students. Civil engineers are the principal designers, constructors, operators, and caretakers of many of the constructed facilities and systems that contribute to the high quality of life enjoyed in the United States. The Charles E. Via, Jr. Department of Civil and Environmental Engineering offers educational programs in all areas of civil engineering practice.
Browse
Browsing Charles E. Via Jr. Department of Civil and Environmental Engineering by Department "Center for Coastal Studies"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- A One-Dimensional Model for Turbulent Mixing in the Benthic Biolayer of Stream and Coastal SedimentsGrant, Stanley B.; Gomez-Velez, Jesus D.; Ghisalberti, Marco; Guymer, Ian; Boano, Fulvio; Roche, Kevin; Harvey, Judson (2020-12)In this paper, we develop and validate a rigorous modeling framework, based on Duhamel's Theorem, for the unsteady one-dimensional vertical transport of a solute across a flat sediment-water interface (SWI) and through the benthic biolayer of a turbulent stream. The modeling framework is novel in capturing the two-way coupling between evolving solute concentrations above and below the SWI and in allowing for a depth-varying diffusivity. Three diffusivity profiles within the sediment (constant, exponentially decaying, and a hybrid model) are evaluated against an extensive set of previously published laboratory measurements of turbulent mass transfer across the SWI. The exponential diffusivity profile best represents experimental observations and its reference diffusivity scales with the permeability Reynolds number, a dimensionless measure of turbulence at the SWI. The depth over which turbulence-enhanced diffusivity decays is of the order of centimeters and comparable to the thickness of the benthic biolayer. Thus, turbulent mixing across the SWI may serve as a universal transport mechanism, supplying the nutrient and energy fluxes needed to sustain microbial growth, and nutrient processing, in the benthic biolayer of stream and coastal sediments.
- Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution TheoryParker, E. A.; Grant, Stanley B.; Cao, Y.; Rippy, Megan A.; McGuire, Kevin J.; Holden, P. A.; Feraud, M.; Avasarala, S.; Liu, H.; Hung, W. C.; Rugh, M.; Jay, J.; Peng, J.; Shao, S.; Li, D. (2021-02)In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or "green" storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems.
- Research Needs, Challenges, and Strategic Approaches for Natural Hazards and Disaster ReconnaissanceWartman, Joseph; Berman, Jeffrey W.; Bostrom, Ann; Miles, Scott B.; Olsen, Michael; Gurley, Kurtis; Irish, Jennifer L.; Lowes, Laura; Tanner, Troy; Dafni, Jake; Grilliot, Michael; Lyda, Andrew; Peltier, Jaqueline (2020-11-10)Natural hazards and disaster reconnaissance investigations have provided many lessons for the research and practice communities and have greatly improved our scientific understanding of extreme events. Yet, many challenges remain for these communities, including improving our ability to model hazards, make decisions in the face of uncertainty, enhance community resilience, and mitigate risk. State-of-the-art instrumentation and mobile data collection applications have significantly advanced the ability of field investigation teams to capture quickly perishable data in post-disaster settings. The NHERI RAPID Facility convened a community workshop of experts in the professional, government, and academic sectors to determine reconnaissance data needs and opportunities, and to identify the broader challenges facing the reconnaissance community that hinder data collection and use. Participants highlighted that field teams face many practical and operational challenges before and during reconnaissance investigations, including logistics concerns, safety issues, emotional trauma, and after-returning, issues with data processing and analysis. Field teams have executed many effective missions. Among the factors contributing to successful reconnaissance are having local contacts, effective teamwork, and pre-event training. Continued progress in natural hazard reconnaissance requires adaptation of new, strategic approaches that acquire and integrate data over a range of temporal, spatial, and social scales across disciplines.
- Unifying Advective and Diffusive Descriptions of Bedform Pumping in the Benthic Biolayer of StreamsGrant, Stanley B.; Monofy, Ahmed; Boano, Fulvio; Gomez-Velez, Jesus D.; Guymer, Ian; Harvey, Judson; Ghisalberti, Marco (2020-09-01)Many water quality and ecosystem functions performed by streams occur in the benthic biolayer, the biologically active upper (similar to 5 cm) layer of the streambed. Solute transport through the benthic biolayer is facilitated by bedform pumping, a physical process in which dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and dunes) drive flow across the sediment-water interface. In this paper we derive two predictive modeling frameworks, one advective and the other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks closely reproduce patterns and rates of bedform pumping previously measured in the laboratory, provided that the diffusion model's dispersion coefficient declines exponentially with depth. They are also functionally equivalent, such that parameter sets inferred from the 2D advective model can be applied to the 1D diffusive model, and vice versa. The functional equivalence and complementary strengths of these two models expand the range of questions that can be answered, for example, by adopting the 2D advective model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on flow-dependent processes and the 1D diffusive model to study problems where multiple transport mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 2D advective and 1D diffusive descriptions of bedform pumping, our analytical results provide a straightforward and computationally efficient approach for predicting, and better understanding, solute transport in the benthic biolayer of streams and coastal sediments.