Scholarly Works, Virginia Tech Carilion School of Medicine (VTCSOM)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Virginia Tech Carilion School of Medicine (VTCSOM) by Department "Fralin Biomedical Research Institute"
Now showing 1 - 20 of 33
Results Per Page
Sort Options
- The adhesion function of the sodium channel beta subunit (beta 1) contributes to cardiac action potential propagationVeeraraghavan, Rengasayee; Hoeker, Gregory S.; Alvarez-Laviada, Anita; Hoagland, Daniel T.; Wan, Xiaoping; King, D. Ryan; Sanchez-Alonso, Jose; Chen, Chunling; Jourdan, L. Jane; Isom, Lori L.; Deschenes, Isabelle; Smith, James W.; Gorelik, Julia; Poelzing, Steven; Gourdie, Robert G. (2018-08-14)Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that beta 1(SCN1B) - mediated adhesion scaffolds trans-activating Na(V)1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential beta 1 localization at the perinexus, where it co-locates with Na(V)1.5. Smart patch clamp (SPC) indicated greater sodium current density (I-Na) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, beta adp1, potently and selectively inhibited beta 1-mediated adhesion, in electric cell-substrate impedance sensing studies. beta adp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal I-Na, but not whole cell I-Na, in myocyte monolayers. In optical mapping studies, beta adp1 precipitated arrhythmogenic conduction slowing. In summary, beta 1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.
- Antitumor Activity of Curcumin in GlioblastomaWalker, Blake C.; Mittal, Sandeep (MDPI, 2020-12-11)Current standard-of-care treatment for glioblastoma, the most common malignant primary central nervous system (CNS) tumor, consists of surgical resection followed by adjuvant chemotherapy and radiation (Stupp protocol), providing an overall median survival of 15 months. With additional treatment using tumor-treating fields (Optune® therapy, Novocure Ltd., Haifa, Israel), survival can be extended up to 20 months. In spite of significant progress in our understanding of the molecular pathogenesis, the prognosis for patients with malignant gliomas remains poor and additional treatment modalities are critically needed. Curcumin is a bright yellow pigment found in the rhizome of the widely utilized spice, turmeric (Curcuma longa). It has long been used in South Asian traditional medicines and has been demonstrated to have in vitro antioxidant, anti-inflammatory, and antiproliferative effects. Curcumin has been demonstrated to induce multiple cytotoxic effects in tumor cells including cell cycle arrest, apoptosis, autophagy, changes in gene expression, and disruption of molecular signaling. Additionally, curcumin has been shown to potentiate the effect of radiation on cancer cells, while exhibiting a protective effect on normal tissue. Curcumin’s positive safety profile and widespread availability make it a promising compound for future clinical trials for high-grade gliomas.
- Burkitt-type lymphoma incidentally found as the cause of acute appendicitis: a case report and review of literatureShahmanyan, Davit; Saway, Brian F.; Palmerton, Hannah; Rudderow, John S.; Reed, Christopher M.; Wattsman, Terri-Ann; Faulks, Emily R.; Collier, Bryan R.; Budin, Robert E.; Hamill, Mark E. (2021-09-24)Background Appendectomy remains one of the most common emergency operations. Recent research supports the treatment of uncomplicated appendicitis with antibiotics alone. While nonoperative management of appendicitis may be safe in some patients, it may result in missed neoplasms. We present a case of acute appendicitis where the final pathology resulted in a diagnosis of a Burkitt-type lymphoma. Case presentation An 18-year-old male presented to the emergency department with 24 h of right lower quadrant pain with associated urinary retention, anorexia, and malaise. Past medical history was significant for intermittent diarrhea and anal fissure. He exhibited focal right lower quadrant tenderness. Workup revealed leukocytosis and CT uncovered acute appendicitis with periappendiceal abscess and no appendicolith. Laparoscopic appendectomy was performed and found acute appendicitis with associated abscess abutting the rectum and bladder. Pathology of the resected appendix reported acute appendicitis with evidence of Burkitt-type lymphoma. A PET scan did not reveal any residual disease. Hematology/oncology was consulted and chemotherapy was initiated with an excellent response. Conclusions Appendiceal lymphomas constitute less than 0.1% of gastrointestinal lymphomas. Primary appendix neoplasms are found in 0.5–1.0% of appendectomy specimens following acute appendicitis. In this case, appendectomy allowed for prompt identification and treatment of an aggressive, rapidly fatal lymphoma resulting in complete remission.
- Comparison of Amino Acid PET to Advanced and Emerging MRI Techniques for Neurooncology Imaging: A Systematic Review of the Recent StudiesStopa, Brittany M.; Juhász, Csaba; Mittal, Sandeep (Hindawi, 2021-01-20)Introduction. Standard neuroimaging protocols for brain tumors have well-known limitations. The clinical use of additional modalities including amino acid PET (aaPET) and advanced MRI (aMRI) techniques (including DWI, PWI, and MRS) is emerging in response to the need for more accurate detection of brain tumors. In this systematic review of the past 2 years of the literature, we discuss the most recent studies that directly compare or combine aaPET and aMRI for brain tumor imaging. Methods. A PubMed search was conducted for human studies incorporating both aaPET and aMRI and published between July 2018 and August 2020. Results. A total of 22 studies were found in the study period. Recent studies of aaPET with DWI showed a superiority of MET, FET, FDOPA, and AMT PET for detecting tumor, predicting recurrence, diagnosing progression, and predicting survival. Combining modalities further improved performance. Comparisons of aaPET with PWI showed mixed results about spatial correlation. However, both modalities were able to detect high-grade tumors, identify tumor recurrence, differentiate recurrence from treatment effects, and predict survival. aaPET performed better on these measures than PWI, but when combined, they had the strongest results. Studies of aaPET with MRS demonstrated that both modalities have diagnostic potential but MET PET and FDOPA PET performed better than MRS. MRS suffered from some data quality issues that limited analysis in two studies, and, in one study that combined modalities, overall performance actually decreased. Four recent studies compared aaPET with emerging MRI approaches (such as CEST imaging, MR fingerprinting, and SISTINA), but the initial results remain inconclusive. Conclusions. aaPET outperformed the aMRI imaging techniques in most recent studies. DWI and PWI added meaningful complementary data, and the combination of aaPET with aMRI yielded the best results in most studies.
- The conduction velocity-potassium relationship in the heart is modulated by sodium and calciumKing, D. Ryan; Entz, Michael, II; Blair, Grace A.; Crandell, Ian; Hanlon, Alexandra L.; Lin, Joyce; Hoeker, Gregory S.; Poelzing, Steven (2021-03)The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-mu M carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
- Connexin 43 peptidic medicine for glioblastoma stem cellsSheng, Zhi (Elsevier, 2021-02-01)
- Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function RegulationStrauss, Randy E.; Gourdie, Robert G. (MDPI, 2020-12-10)Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
- The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent MannerStrauss, Randy E.; Mezache, Louisa; Veeraraghavan, Rengasayee; Gourdie, Robert G. (MDPI, 2021-08-12)The Cx43 carboxyl-terminus (CT) mimetic peptide, αCT1, originally designed to bind to Zonula Occludens 1 (ZO1) and thereby inhibit Cx43/ZO1 interaction, was used as a tool to probe the role of Cx43/ZO1 association in regulation of epithelial/endothelial barrier function. Using both in vitro and ex vivo methods of barrier function measurement, including Electric Cell-Substrate Impedance Sensing (ECIS), a TRITC-dextran Transwell permeability assay, and a FITC-dextran cardiovascular leakage protocol involving Langendorff-perfused mouse hearts, αCT1 was found to protect the endothelium from thrombin-induced breakdown in cell–cell contacts. Barrier protection was accompanied by significant remodeling of the F-actin cytoskeleton, characterized by a redistribution of F-actin away from the cytoplasmic and nuclear regions of the cell, towards the endothelial cell periphery, in association with alterations in cellular chiral orientation distribution. In line with observations of increased cortical F-actin, αCT1 upregulated cell–cell border localization of endothelial VE-cadherin, the tight junction protein Zonula Occludens 1 (ZO1), and the Gap Junction Protein (GJ) Connexin43 (Cx43). A ZO1 binding-incompetent variant of αCT1, αCT1-I, indicated that these effects on barrier function and barrier-associated proteins, were likely associated with Cx43 CT sequences retaining ability to interact with ZO1. These results implicate the Cx43 CT and its interaction with ZO1, in the regulation of endothelial barrier function, while revealing the therapeutic potential of αCT1 in the treatment of vascular edema.
- Deficiency in the endocytic adaptor proteins PHETA1/2 impairs renal and craniofacial developmentAtes, Kristin M.; Wang, Tong; Moreland, Trevor; Veeranan-Karmegam, Rajalakshmi; Ma, Manxiu; Jeter, Chelsi; Anand, Priya; Wenzel, Wolfgang; Kim, Hyung-Goo; Wolfe, Lynne A.; Stephen, Joshi; Adams, David R.; Markello, Thomas; Tifft, Cynthia J.; Settlage, Robert E.; Gahl, William A.; Gonsalvez, Graydon B.; Malicdan, May Christine; Flanagan-Steet, Heather; Pan, Yuchin Albert (2020-05)A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, phetal and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient. This article has an associated First Person interview with the first author of the paper.
- Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communitiesCeci, Alessandro; Muñoz-Ballester, Carmen; Tegge, Allison N.; Brown, Katherine L.; Umans, Robyn A.; Michel, F. Marc; Patel, Dipankumar; Tewari, Bhanu P.; Martin, James E.; Alcoreza, Oscar Jr.; Maynard, Thomas M.; Martinez-Martinez, Daniel; Bordwine, Paige; Bissell, Noelle; Friedlander, Michael J.; Sontheimer, Harald; Finkielstein, Carla V. (Nature Publishing Group, 2021-07-20)Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
- Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleusSabbagh, Ubadah; Govindaiah, Gubbi; Somaiya, Rachana D.; Ha, Ryan V.; Wei, Jessica C.; Guido, William; Fox, Michael A. (Wiley, 2020-05-19)In the visual system, retinal axons convey visual information from the outside world to dozens of distinct retinorecipient brain regions and organize that information at several levels, including either at the level of retinal afferents, cytoarchitecture of intrinsic retinorecipient neurons, or a combination of the two. Two major retinorecipient nuclei which are densely innervated by retinal axons are the dorsal lateral geniculate nucleus, which is important for classical image-forming vision, and ventral LGN (vLGN), which is associated with non-image-forming vision. The neurochemistry, cytoarchitecture, and retinothalamic connectivity in vLGN remain unresolved, raising fundamental questions of how it receives and processes visual information. To shed light on these important questions, used in situ hybridization, immunohistochemistry, and genetic reporter lines to identify and characterize novel neuronal cell types in mouse vLGN. Not only were a high percentage of these cells GABAergic, we discovered transcriptomically distinct GABAergic cell types reside in the two major laminae of vLGN, the retinorecipient, external vLGN (vLGNe) and the non-retinorecipient, internal vLGN (vLGNi). Furthermore, within vLGNe, we identified transcriptionally distinct subtypes of GABAergic cells that are distributed into four adjacent sublaminae. Using trans-synaptic viral tracing and in vitro electrophysiology, we found cells in each these vLGNe sublaminae receive monosynaptic inputs from retina. These results not only identify novel subtypes of GABAergic cells in vLGN, they suggest the subtype-specific laminar distribution of retinorecipient cells in vLGNe may be important for receiving, processing, and transmitting light-derived signals in parallel channels of the subcortical visual system.
- Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic PerspectiveAlcoreza, Oscar Jr.; Patel, Dipan C.; Tewari, Bhanu P.; Sontheimer, Harald (2021-03-22)Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System xc-, a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- Elevated perfusate [Na+] increases contractile dysfunction during ischemia and reperfusionKing, D. Ryan; Padget, Rachel L.; Perry, Justin B.; Hoeker, Gregory S.; Smyth, James W.; Brown, David A.; Poelzing, Steven (2020-10-14)Recent studies revealed that relatively small changes in perfusate sodium ([Na+](o)) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+](o) modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+](o) that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia-reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia-reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+](o) decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+](o) at baseline and reduced the time to peak ischemic contracture. Ischemia-reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+](o) further depressed mechanical function. In summary, elevating [Na+](o) by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+](o), with cardiac ischemia may require further investigation.
- Episodes of strain experienced in the operating room: impact of the type of surgery, the profession and the phase of the operationKeller, Sandra; Yule, Steven; Smink, Douglas S.; Zagarese, Vivian; Safford, Shawn D.; Parker, Sarah H. (2020-12-07)Abstract Background Strain episodes, defined as phases of higher workload, stress or negative emotions, occur everyday in the operating room (OR). Accurate knowledge of when strain is most intense for the different OR team members is imperative for developing appropriate interventions. The primary goal of the study was to investigate temporal patterns of strain across surgical phases for different professionals working in the OR, for different types of operations. Methods We developed a guided recall method to assess the experience of strain from the perspective of operating room (OR) team members. The guided recall was completed by surgeons, residents, anesthesiologists, circulating nurses and scrub technicians immediately after 113 operations, performed in 5 departments of one hospital in North America. We also conducted interviews with 16 surgeons on strain moments during their specific operation types. Strain experiences were related to surgical phases and compared across different operation types separately for each profession in the OR. Results We analyzed 693 guided recalls. General linear modeling (GLM) showed that strain varied across the phases of the operations (defined as before incision, first third, middle third and last third) [quadratic (F = 47.85, p < 0.001) and cubic (F = 8.94, p = 0.003) effects]. Phases of operations varied across professional groups [linear (F = 4.14, p = 0.001) and quadratic (F = 14.28, p < 0.001) effects] and surgery types [only cubic effects (F = 4.92, p = 0.001)]. Overall strain was similar across surgery types (F = 1.27, p = 0.28). Surgeons reported generally more strain episodes during the first and second third of the operations; except in vascular operations, where no phase was associated with significantly higher strain levels, and emergency/trauma surgery, where strain episodes occurred primarily during the first third of the operation. Other professional groups showed different strain time patterns. Conclusions Members of the OR teams experience strain differently across the phases of an operation. Thus, phases with high concentration requirements may highly vary across OR team members and no single phase of an operation can be defined as a “sterile cockpit” phase for all team members.
- High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunityRingel-Scaia, Veronica M.; Beitel-White, Natalie; Lorenzo, Melvin F.; Brock, Rebecca M.; Huie, Kathleen E.; Coutermarsh-Ott, Sheryl; Eden, Kristin; McDaniel, Dylan K.; Verbridge, Scott S.; Rossmeisl, John H. Jr.; Oestreich, Kenneth J.; Davalos, Rafael V.; Allen, Irving C. (2019-06)Background: Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods: Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings: H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation: Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity. (C) 2019 The Authors. Published by Elsevier B.V.
- Impaired mentalizing in depression and the effects of borderline personality disorder on this relationshipRifkin-Zybutz, R. P.; Moran, P.; Nolte, Tobias; Feigenbaum, Janet; Casas, Brooks; Fonagy, Peter; Montague, P. Read (2021-05-04)Background Mentalizing, the ability to understand the self and others as well as behaviour in terms of intentional mental states, is impaired in Borderline Personality Disorder (BPD). Evidence for mentalizing deficits in other mental disorders, such as depression, is less robust and these links have never been explored while accounting for the effects of BPD on mentalizing. Additionally, it is unknown whether BPD symptoms might moderate any relationship between depressive symptoms and mentalizing. Methods Using multivariate regression modelling on cross-sectional data obtained from a sample of 274 participants recruited from clinical settings, we investigated the association between mentalizing impairment and depression and examined whether this was moderated by the presence and number of concurrent BPD symptoms, while adjusting for socio-demographic confounders. Results Impaired mentalizing was associated with depressive symptoms, after adjustment for socio-demographic confounders and BPD symptoms (p = 0.002, β = − 0.18). BPD symptoms significantly moderated the association between impaired mentalizing and depressive symptoms (p = 0.003), with more severe borderline symptoms associated with a stronger effect of poor mentalization on increased depressive symptoms. Conclusion Mentalizing impairments occur in depression even after adjusting for the effect of BPD symptoms. Our findings help further characterise mentalizing impairments in depression, as well as the moderating effect of BPD symptoms on this association.. Further longitudinal work is required to investigate the direction of association.
- Intercalated Disk Extracellular Nanodomain Expansion in Patients With Atrial FibrillationRaisch, Tristan B.; Yanoff, Matthew S.; Larsen, Timothy R.; Farooqui, Mohammed A.; King, D. Ryan; Veeraraghavan, Rengasayee; Gourdie, Robert G.; Baker, Joseph W.; Arnold, William S.; AlMahameed, Soufian T.; Poelzing, Steven (Frontiers, 2018-05-04)Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous evidence in animal models suggests that the gap junction (GJ) adjacent nanodomain - perinexus - is a site capable of independent intercellular communication via ephaptic transmission. Perinexal expansion is associated with slowed conduction and increased ventricular arrhythmias in animal models, but has not been studied in human tissue. The purpose of this study was to characterize the perinexus in humans and determine if perinexal expansion associates with AF. Methods: Atrial appendages from 39 patients (pts) undergoing cardiac surgery were fixed for immunofluorescence and transmission electron microscopy (TEM). Intercalated disk distribution of the cardiac sodium channel Nav1.5, its beta 1 subunit, and connexin43 (C x 43) was determined by confocal immunofluorescence. Perinexal width (Wp) from TEM was manually segmented by two blinded observers using ImageJ software. Results: Nav1.5, beta 1, and C x 43 are co-adjacent within intercalated disks of human atria, consistent with perinexal protein distributions in ventricular tissue of other species. TEM revealed that the GJ adjacent intermembrane separation in an individual perinexus does not change at distances greater than 30 nm from the GJ edge. Importantly, Wp is significantly wider in patients with a history of AF than in patients with no history of AF by approximately 3 nm, and Wp correlates with age (R = 0.7, p < 0.05). Conclusion: Human atrial myocytes have voltage-gated sodium channels in a dynamic intercellular cleft adjacent to GJs that is consistent with previous descriptions of the perinexus. Further, perinexal width is greater in patients with AF undergoing cardiac surgery than in those without.
- Medical Students' Knowledge and Perception of Deep Brain StimulationSaway, Brian F.; Monjazeb, Sanaz; Godbe, Kerilyn; Anwyll, Tessa; Kablinger, Anita S.; Witcher, Mark R. (2021-03)BACKGROUND: Deep brain stimulation (DBS) is a well-established neurosurgical procedure commonly used in movement and psychiatric disorders. Its widespread clinical implementation, however, may not be commensurate with medical education. No current assessment of medical student's understanding of DBS as a treatment option for indicated conditions is available, potentially threatening the availability of DBS to future patients. The aim of the present study is to explore the current knowledge and attitudes of medical students toward DBS as a treatment modality. METHODS: A total of 65 medical students at Virginia Tech Carilion School of Medicine were surveyed regarding their knowledge of DBS. The survey consisted of a 25-item questionnaire including a demographic section and 3 separate inventories designed to assess bias, knowledge, and self-assessment of knowledge specific to DBS therapy. Students in pre-clinical and clinical years were analyzed separately to describe changes in knowledge or attitude associated with clinical exposure to DBS. Comparisons were analyzed using t tests, ANOVA, and Pearson correlations. RESULTS: Of surveyed students, 36% were unsure of the FDA approval status of DBS treatment; 65% of students believed they had not been adequately educated about DBS and its utility; and 10.6% of students believed that DBS is likely associated with severe adverse effects and/or brain damage. The overall baseline attitudes of students toward DBS were positive. There was no observed difference between surveyed pre-clinical and clinical students, highlighting a lack of exposure throughout the clinical years of medical school education. CONCLUSION: Although DBS is an effective treatment modality for various conditions, current education is non-commensurate with its application, which can negatively impact awareness and understanding for its implications by medical professionals. In order to better serve patients who may benefit from DBS, medical curricula must change to educate future physicians on the benefit of this intervention.
- Molecular Imaging of Brain Tumor-Associated EpilepsyJuhász, Csaba; Mittal, Sandeep (MDPI, 2020-12-05)Epilepsy is a common clinical manifestation and a source of significant morbidity in patients with brain tumors. Neuroimaging has a pivotal role in neuro-oncology practice, including tumor detection, differentiation, grading, treatment guidance, and posttreatment monitoring. In this review, we highlight studies demonstrating that imaging can also provide information about brain tumor-associated epileptogenicity and assist delineation of the peritumoral epileptic cortex to optimize postsurgical seizure outcome. Most studies focused on gliomas and glioneuronal tumors where positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques can detect metabolic and biochemical changes associated with altered amino acid transport and metabolism, neuroinflammation, and neurotransmitter abnormalities in and around epileptogenic tumors. PET imaging of amino acid uptake and metabolism as well as activated microglia can detect interictal or peri-ictal cortical increased uptake (as compared to non-epileptic cortex) associated with tumor-associated epilepsy. Metabolic tumor volumes may predict seizure outcome based on objective treatment response during glioma chemotherapy. Advanced MRI, especially glutamate imaging, can detect neurotransmitter changes around epileptogenic brain tumors. Recently, developed PET radiotracers targeting specific glutamate receptor types may also identify therapeutic targets for pharmacologic seizure control. Further studies with advanced multimodal imaging approaches may facilitate development of precision treatment strategies to control brain tumor-associated epilepsy.