Department of Aerospace and Ocean Engineering
Permanent URI for this community
Browse
Browsing Department of Aerospace and Ocean Engineering by Department "Biological Sciences"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Predicting network modules of cell cycle regulators using relative protein abundance statisticsOguz, Cihan; Watson, Layne T.; Baumann, William T.; Tyson, John J. (2017-02-28)Background Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of “feasible” parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Results Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in “regulation of cell size” and “regulation of G1/S transition” contribute most to predictive variability, whereas proteins involved in “positive regulation of transcription involved in exit from mitosis,” “mitotic spindle assembly checkpoint” and “negative regulation of cyclin-dependent protein kinase by cyclin degradation” contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. Conclusions By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.
- A Stochastic Model Correctly Predicts Changes in Budding Yeast Cell Cycle Dynamics upon Periodic Expression of CLN2Oguz, Cihan; Palmisano, Alida; Laomettachit, Teeraphan; Watson, Layne T.; Baumann, William T.; Tyson, John J. (PLOS, 2014-05-09)In this study, we focus on a recent stochastic budding yeast cell cycle model. First, we estimate the model parameters using extensive data sets: phenotypes of 110 genetic strains, single cell statistics of wild type and cln3 strains. Optimization of stochastic model parameters is achieved by an automated algorithm we recently used for a deterministic cell cycle model. Next, in order to test the predictive ability of the stochastic model, we focus on a recent experimental study in which forced periodic expression of CLN2 cyclin (driven by MET3 promoter in cln3 background) has been used to synchronize budding yeast cell colonies. We demonstrate that the model correctly predicts the experimentally observed synchronization levels and cell cycle statistics of mother and daughter cells under various experimental conditions (numerical data that is not enforced in parameter optimization), in addition to correctly predicting the qualitative changes in size control due to forced CLN2 expression. Our model also generates a novel prediction: under frequent CLN2 expression pulses, G1 phase duration is bimodal among small-born cells. These cells originate from daughters with extended budded periods due to size control during the budded period. This novel prediction and the experimental trends captured by the model illustrate the interplay between cell cycle dynamics, synchronization of cell colonies, and size control in budding yeast.