Bradley Department of Electrical and Computer Engineering
Permanent URI for this community
From pervasive computing, to smart power systems, Virginia Tech ECE faculty and students delve into all major areas of electrical and computer engineering. The main campus is in Blacksburg, and the department has additional research and teaching facilities in Arlington, Falls Church, and Hampton, Virginia.
Browse
Browsing Bradley Department of Electrical and Computer Engineering by Department "Center for Space Science and Engineering Research (Space@VT)"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex eventsKim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Juergen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua (2017-07)We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (P-d) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72 degrees-74 degrees in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
- Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation networkShiokawa, Kazuo; Katoh, Yasuo; Hamaguchi, Yoshiyuki; Yamamoto, Yuka; Adachi, Takumi; Ozaki, Mitsunori; Oyama, Shin-Ichiro; Nosé, Masahito; Nagatsuma, Tsutomu; Tanaka, Yoshimasa; Otsuka, Yuichi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Takagi, Yuki; Takeshita, Yuhei; Shinbori, Atsuki; Kurita, Satoshi; Hori, Tomoaki; Nishitani, Nozomu; Shinohara, Iku; Tsuchiya, Fuminori; Obana, Yuki; Suzuki, Shin; Takahashi, Naoko; Seki, Kanako; Kadokura, Akira; Hosokawa, Keisuke; Ogawa, Yasunobu; Connors, Martin; Ruohoniemi, J. Michael; Engebretson, Mark J.; Turunen, Esa; Ulich, Thomas; Manninen, Jyrki; Raita, Tero; Kero, Antti; Oksanen, Arto; Back, Marko; Kauristie, Kirsti; Mattanen, Jyrki; Baishev, Dmitry; Kurkin, Vladimir; Oinats, Alexey; Pashinin, Alexander; Vasilyev, Roman; Rakhmatulin, Ravil; Bristow, William A.; Karjala, Marty (2017-11-28)The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, (http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth.
- High correlations between temperature and nitric oxide in the thermosphereWeimer, Daniel R.; Mlynczak, M. G.; Hunt, L. A.; Tobiska, W. K. (American Geophysical Union, 2015-07-01)Obtaining accurate predictions of the neutral density in the thermosphere has been a long-standing problem. During geomagnetic storms the auroral heating in the polar ionospheres quickly raises the temperature of the thermosphere, resulting in higher neutral densities that exert a greater drag force on objects in low Earth orbit. Rapid increases and decreases in the temperature and density may occur within a couple days. A key parameter in the thermosphere is the total amount of nitric oxide (NO). The production of NO is accelerated by the auroral heating, and since NO is an efficient radiator of thermal energy, higher concentrations of this molecule accelerate the rate at which the thermosphere cools. This paper describes an improved technique that calculates changes in the global temperature of the thermosphere. Starting from an empirical model of the Poynting flux into the ionosphere, a set of differential equations derives the minimum, global value of the exospheric temperature, which can be used in a neutral density model to calculate the global values. The relative variations in NO content are used to obtain more accurate cooling rates. Comparisons with the global rate of NO emissions that are measured with the Sounding of the Atmosphere using Broadband Emission Radiometry instrument show that there is very good agreement with the predicted values. The NO emissions correlate highly with the total auroral heating that has been integrated over time. We also show that the NO emissions are highly correlated with thermospheric temperature, as well as indices of solar extreme ultraviolet radiation.
- Storm time meridional wind perturbations in the equatorial upper thermosphereHaaser, R. A.; Davidson, R.; Heelis, R. A.; Earle, Gregory D.; Venkatraman, S.; Klenzing, J. (American Geophysical Union, 2013-05-01)We present observations from the Coupled Ion Neutral Dynamics Investigation (CINDI) of storm time meridional winds in the neutral atmosphere near the magnetic equator at 400km altitude. Observations near the magnetic equator in the southern geographic hemisphere are dominated by energy inputs from the southern Polar Regions that produce south to north (equatorward) wind perturbations to accompany perturbations in the neutral density and temperature. In one exceptional case, when observations are made near midnight and the north magnetic pole rotates through the midnight sector, north to south (poleward) meridional wind perturbations are observed just south of the magnetic equator. Accompanying perturbations in the neutral density on the dayside and the nightside are consistent with observed increases in the ion temperature and inferred increases in the neutral temperature in accord with hydrostatic equilibrium.